Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
SLAS Discov ; 24(2): 111-120, 2019 02.
Article in English | MEDLINE | ID: mdl-30589598

ABSTRACT

SLC6A19 (B0AT1) is a neutral amino acid transporter, the loss of function of which results in Hartnup disease. SLC6A19 is also believed to have an important role in amino acid homeostasis, diabetes, and weight control. A small-molecule inhibitor of human SLC6A19 (hSLC6A19) was identified using two functional cell-based assays: a fluorescence imaging plate reader (FLIPR) membrane potential (FMP) assay and a stable isotope-labeled neutral amino acid uptake assay. A diverse collection of 3440 pharmacologically active compounds from the Microsource Spectrum and Tocriscreen collections were tested at 10 µM in both assays using MDCK cells stably expressing hSLC6A19 and its obligatory subunit, TMEM27. Compounds that inhibited SLC6A19 activity in both assays were further confirmed for activity and selectivity and characterized for potency in functional assays against hSLC6A19 and related transporters. A single compound, cinromide, was found to robustly, selectively, and reproducibly inhibit SLC6A19 in all functional assays. Structurally related analogs of cinromide were tested to demonstrate structure-activity relationship (SAR). The assays described here are suitable for carrying out high-throughput screening campaigns to identify modulators of SLC6A19.


Subject(s)
Amino Acid Transport Systems, Neutral/antagonists & inhibitors , Biological Assay/methods , Amino Acid Transport Systems, Neutral/metabolism , Animals , Cell Line , Fluorescence , Humans , Isotope Labeling , Membrane Potentials , Xenopus laevis
2.
Sci Rep ; 8(1): 4994, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29556060

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

3.
Sci Rep ; 8(1): 3681, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29487322

ABSTRACT

Certain recessively inherited diseases result from an enzyme deficiency within lysosomes. In mucopolysaccharidoses (MPS), a defect in glycosaminoglycan (GAG) degradation leads to GAG accumulation followed by progressive organ and multiple system dysfunctions. Current methods of GAG analysis used to diagnose and monitor the diseases lack sensitivity and throughput. Here we report a LC-MS method with accurate metabolite mass analysis for identifying and quantifying biomarkers for MPS type I without the need for extensive sample preparation. The method revealed 225 LC-MS features that were >1000-fold enriched in urine, plasma and tissue extracts from untreated MPS I mice compared to MPS I mice treated with iduronidase to correct the disorder. Levels of several trisaccharides were elevated >10000-fold. To validate the clinical relevance of our method, we confirmed the presence of these biomarkers in urine, plasma and cerebrospinal fluid from MPS I patients and assessed changes in their levels after treatment.


Subject(s)
Biomarkers/blood , Biomarkers/urine , Mucopolysaccharidosis I/blood , Mucopolysaccharidosis I/urine , Animals , Chromatography, Liquid , Disease Models, Animal , Female , Glycosaminoglycans/blood , Heparitin Sulfate/blood , Humans , Iduronidase/blood , Male , Mice , Trisaccharides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...