Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798651

ABSTRACT

Background: IL4, IL5, IL13, and IL17-producing CD4 T helper 2 (Th2)-cells and IL17-producing CD4 T helper 17 (Th17)-cells contribute to chronic eosinophilic and neutrophilic airway inflammation in asthma and allergic airway inflammation. Chemokines and their receptors are upregulated in Th2/Th17-mediated inflammation. However, the ability of CXCR1 and CXCR2 modulate Th2 and Th17-cell-mediated allergic lung inflammation has not been reported. Methods: Mice sensitized and challenged with cat dander extract (CDE) mount a vigorous Th2-Th17-mediated allergic lung inflammation. Allosteric inhibitor of CXCR1 and CXCR2, ladarixin was orally administered in this model. The ability of ladarixin to modulate allergen-challenge induced recruitment of CXCR1 and CXCR2-expressing Th2 and Th17-cells and allergic lung inflammation were examined. Results: Allergen challenge in sensitized mice increased mRNA expression levels of Il4, Il5, Il13, Il6, Il1ß, Tgfß1, Il17, Il23, Gata3, and Rorc , and induced allergic lung inflammation characterized by recruitment of CXCR1- and CXCR2-expressing Th2-cells, Th17-cells, neutrophils, and eosinophils. Allosteric inhibition of CXCR1 and CXCR2 vigorously blocked each of these pro-inflammatory effects of allergen challenge. CXCL chemokines induced a CXCR1 and CXCR2-dependent proliferation of IL4, IL5, IL13, and IL17 expressing T-cells. Conclusion: Allosteric inhibition of CXCR1 and CXCR2 abrogates blocks recruitment of CXCR1- and CXCR2-expressing Th2-cells, Th17-cells, neutrophils, and eosinophils in this mouse model of allergic lung inflammation. We suggest that the ability of allosteric inhibition of CXCR1 and CXCR2 to abrogate Th2 and Th17-mediated allergic inflammation should be investigated in humans.

2.
Sci Adv ; 8(46): eabq0615, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36383649

ABSTRACT

Chronic exposure to airborne carbon black ultrafine (nCB) particles generated from incomplete combustion of organic matter drives IL-17A-dependent emphysema. However, whether and how they alter the immune responses to lung cancer remains unknown. Here, we show that exposure to nCB particles increased PD-L1+ PD-L2+ CD206+ antigen-presenting cells (APCs), exhausted T cells, and Treg cells. Lung macrophages that harbored nCB particles showed selective mitochondrial structure damage and decreased oxidative respiration. Lung macrophages sustained the HIF1α axis that increased glycolysis and lactate production, culminating in an immunosuppressive microenvironment in multiple mouse models of non-small cell lung cancers. Adoptive transfer of lung APCs from nCB-exposed wild type to susceptible mice increased tumor incidence and caused early metastasis. Our findings show that nCB exposure metabolically rewires lung macrophages to promote immunosuppression and accelerates the development of lung cancer.


Subject(s)
Lung Neoplasms , Soot , Mice , Animals , Soot/metabolism , Particulate Matter/adverse effects , Lung Neoplasms/etiology , Lung Neoplasms/metabolism , Macrophages , Lung/metabolism , Carbon/metabolism , Tumor Microenvironment
3.
Respir Res ; 22(1): 263, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34629055

ABSTRACT

BACKGROUND: Inhalation of fungal spores is a strong risk factor for severe asthma and experimentally leads to development of airway mycosis and asthma-like disease in mice. However, in addition to fungal spores, humans are simultaneously exposed to other inflammatory agents such as lipopolysaccharide (LPS), with uncertain relevance to disease expression. To determine how high dose inhalation of LPS influences the expression of allergic airway disease induced by the allergenic mold Aspergillus niger (A. niger). METHODS: C57BL/6J mice were intranasally challenged with the viable spores of A. niger with and without 1 µg of LPS over two weeks. Changes in airway hyperreactivity, airway and lung inflammatory cell recruitment, antigen-specific immunoglobulins, and histopathology were determined. RESULTS: In comparison to mice challenged only with A. niger, addition of LPS (1 µg) to A. niger abrogated airway hyperresponsiveness and strongly attenuated airway eosinophilia, PAS+ goblet cells and TH2 responses while enhancing TH1 and TH17 cell recruitment to lung. Addition of LPS resulted in more severe, diffuse lung inflammation with scattered, loosely-formed parenchymal granulomas, but failed to alter fungus-induced IgE and IgG antibodies. CONCLUSIONS: In contrast to the strongly allergic lung phenotype induced by fungal spores alone, addition of a relatively high dose of LPS abrogates asthma-like features, replacing them with a phenotype more consistent with acute hypersensitivity pneumonitis (HP). These findings extend the already established link between airway mycosis and asthma to HP and describe a robust model for further dissecting the pathophysiology of HP.


Subject(s)
Alveolitis, Extrinsic Allergic/microbiology , Aspergillus niger/pathogenicity , Bronchial Hyperreactivity/microbiology , Lipopolysaccharides , Lung/microbiology , Pulmonary Aspergillosis/microbiology , Spores, Fungal/pathogenicity , Alveolitis, Extrinsic Allergic/chemically induced , Alveolitis, Extrinsic Allergic/immunology , Alveolitis, Extrinsic Allergic/physiopathology , Animals , Aspergillus niger/immunology , Bronchial Hyperreactivity/chemically induced , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/physiopathology , Bronchoconstriction , Disease Models, Animal , Eosinophils/immunology , Inhalation Exposure , Lung/immunology , Lung/physiopathology , Mice, Inbred C57BL , Pulmonary Aspergillosis/immunology , Pulmonary Aspergillosis/physiopathology , Spores, Fungal/immunology , T-Lymphocytes, Helper-Inducer/immunology
4.
Immunity ; 54(11): 2595-2610.e7, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34506733

ABSTRACT

Fungal airway infection (airway mycosis) is an important cause of allergic airway diseases such as asthma, but the mechanisms by which fungi trigger asthmatic reactions are poorly understood. Here, we leverage wild-type and mutant Candida albicans to determine how this common fungus elicits characteristic Th2 and Th17 cell-dependent allergic airway disease in mice. We demonstrate that rather than proteinases that are essential virulence factors for molds, C. albicans instead promoted allergic airway disease through the peptide toxin candidalysin. Candidalysin activated platelets through the Von Willebrand factor (VWF) receptor GP1bα to release the Wnt antagonist Dickkopf-1 (Dkk-1) to drive Th2 and Th17 cell responses that correlated with reduced lung fungal burdens. Platelets simultaneously precluded lethal pulmonary hemorrhage resulting from fungal lung invasion. Thus, in addition to hemostasis, platelets promoted protection against C. albicans airway mycosis through an antifungal pathway involving candidalysin, GP1bα, and Dkk-1 that promotes Th2 and Th17 responses.


Subject(s)
Blood Platelets/immunology , Candida albicans/physiology , Candidiasis/complications , Candidiasis/immunology , Disease Susceptibility , Host-Pathogen Interactions/immunology , Hypersensitivity/complications , Hypersensitivity/immunology , T-Lymphocyte Subsets/immunology , Blood Platelets/metabolism , Hypersensitivity/metabolism , Lymphocyte Activation/immunology , T-Lymphocyte Subsets/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism
5.
Front Immunol ; 11: 594520, 2020.
Article in English | MEDLINE | ID: mdl-33193446

ABSTRACT

Helminths, including nematodes, cestodes and trematodes, are complex parasitic organisms that infect at least one billion people globally living in extreme poverty. Helminthic infections are associated with severe morbidity particularly in young children who often harbor the highest burden of disease. While each helminth species completes a distinct life cycle within the host, several helminths incite significant lung disease. This impact on the lungs occurs either directly from larval migration and host immune activation or indirectly from a systemic inflammatory immune response. The impact of helminths on the pulmonary immune response involves a sophisticated orchestration and activation of the host innate and adaptive immune cells. The consequences of activating pulmonary host immune responses are variable with several helminthic infections leading to severe, pulmonary compromise while others providing immune tolerance and protection against the development of pulmonary diseases. Further delineation of the convoluted interface between helminth infection and the pulmonary host immune responses is critical to the development of novel therapeutics that are critically needed to prevent the significant global morbidity caused by these parasites.


Subject(s)
Helminthiasis/immunology , Helminthiasis/parasitology , Helminths/immunology , Host-Parasite Interactions/immunology , Lung Diseases, Parasitic/immunology , Lung Diseases, Parasitic/parasitology , Adaptive Immunity , Animals , Biomarkers , Disease Susceptibility , Helminthiasis/metabolism , Helminths/growth & development , Humans , Immunity , Immunity, Innate , Immunomodulation , Life Cycle Stages , Lung Diseases, Parasitic/metabolism , Organ Specificity/immunology
6.
Immun Inflamm Dis ; 6(2): 264-275, 2018 06.
Article in English | MEDLINE | ID: mdl-29575717

ABSTRACT

INTRODUCTION: Fungal airway infection (airway mycosis) is increasingly recognized as a cause of asthma and related disorders. However, prior controlled studies of patients treated with antifungal antibiotics have produced conflicting results. Our objective is to measure the effect of antifungal therapy in moderate to severe adult asthmatics with positive fungal sputum cultures in a single center referral-based academic practice. METHODS: We retrospectively evaluated 41 patients with asthma and culture-proven airway mycosis treated with either terbinafine, fluconazole, itraconazole, voriconazole, or posaconazole for 4 to >12 weeks together with standard bronchodilator and anti-inflammatory agents. Asthma control (1 = very poorly controlled; 2 = not well controlled; and 3 = well controlled), peak expiratory flow rates (PEFR), serum total IgE, and absolute blood eosinophil counts before and after antifungal therapy were assessed. In comparison, we also studied nine patients with airway mycosis and moderate to severe asthma who received standard therapy but no antifungals. RESULTS: Treatment with azole-based and allylamine antifungals was associated with improved asthma control (mean change in asthma control 1.72-2.25; p = 0.004), increased PEFR (69.4% predicted to 79.3% predicted, p = 0.0011) and markedly reduced serum IgE levels (1,075 kU/L to 463 kU/L, p = 0.0005) and blood eosinophil counts (Mean absolute count 530-275, p = 0.0095). Reduction in symptoms, medication use, and relapse rates decreased as duration of therapy increased. Asthmatics on standard therapy who did not receive antifungals showed no improvement in asthma symptoms or PEFR. Antifungals were usually well tolerated, but discontinuation (12.2%) and relapse (50%) rates were relatively high. CONCLUSION: Antifungals help control symptoms in a subset of asthmatics with culture-proven airway mycosis. Additional randomized clinical trials are warranted to extend and validate these findings.


Subject(s)
Antifungal Agents/therapeutic use , Asthma/drug therapy , Bronchodilator Agents/therapeutic use , Lung Diseases, Fungal/drug therapy , Adult , Aged , Antifungal Agents/pharmacology , Asthma/diagnosis , Asthma/immunology , Asthma/microbiology , Eosinophils/drug effects , Eosinophils/immunology , Female , Humans , Leukocyte Count , Lung Diseases, Fungal/immunology , Lung Diseases, Fungal/microbiology , Male , Middle Aged , Peak Expiratory Flow Rate/drug effects , Peak Expiratory Flow Rate/immunology , Respiratory System/immunology , Respiratory System/microbiology , Retrospective Studies , Severity of Illness Index , Sputum/microbiology , Treatment Outcome
7.
PLoS One ; 10(11): e0142212, 2015.
Article in English | MEDLINE | ID: mdl-26605551

ABSTRACT

Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (ß2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related ß2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related ß2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6.


Subject(s)
Adrenergic beta-2 Receptor Agonists/adverse effects , Anti-Asthmatic Agents/adverse effects , Aspergillosis, Allergic Bronchopulmonary/drug therapy , Asthma/chemically induced , Peptidomimetics/pharmacology , STAT6 Transcription Factor/antagonists & inhibitors , Albuterol/therapeutic use , Animals , Arrestins/deficiency , Arrestins/genetics , Aspergillosis, Allergic Bronchopulmonary/genetics , Aspergillosis, Allergic Bronchopulmonary/metabolism , Aspergillosis, Allergic Bronchopulmonary/pathology , Aspergillus niger/physiology , Asthma/drug therapy , Asthma/genetics , Asthma/metabolism , Bronchoconstriction/drug effects , Carbazoles/adverse effects , Carvedilol , Disease Models, Animal , Female , Formoterol Fumarate/adverse effects , Gene Expression , Humans , Lung/drug effects , Lung/metabolism , Lung/pathology , Mice , Mice, Knockout , Propanolamines/adverse effects , Receptors, Adrenergic, beta-2/deficiency , Receptors, Adrenergic, beta-2/genetics , STAT6 Transcription Factor/agonists , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism , Salmeterol Xinafoate/adverse effects , beta-Arrestins
8.
J Allergy Clin Immunol ; 133(1): 189-97.e1-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23726040

ABSTRACT

BACKGROUND: TH2-dependent diseases vary in severity according to genotype, but relevant gene polymorphisms remain largely unknown. The integrin CD11a is a critical determinant of allergic responses, and allelic variants of this gene might influence allergic phenotypes. OBJECTIVE: We sought to determine major CD11a allelic variants in mice and human subjects and their importance to allergic disease expression. METHODS: We sequenced mouse CD11a alleles from C57BL/6 and BALB/c strains to identify major polymorphisms; human CD11a single nucleotide polymorphisms were compared with allergic disease phenotypes as part of the international HapMap project. Mice on a BALB/c or C57BL/6 background and congenic for the other strain's CD11a allele were created to determine the importance of mouse CD11a polymorphisms in vivo and in vitro. RESULTS: Compared with the C57BL/6 allele, the BALB/c CD11a allele contained a nonsynonymous change from asparagine to aspartic acid within the metal ion binding domain. In general, the BALB/c CD11a allele enhanced and the C57BL/6 CD11a allele suppressed TH2 cell-dependent disease caused by the parasite Leishmania major and allergic lung disease caused by the fungus Aspergillus niger. Relative to the C57BL/6 CD11a allele, the BALB/c CD11a allele conferred both greater T-cell adhesion to CD54 in vitro and enhanced TH2 cell homing to lungs in vivo. We further identified a human CD11a polymorphism that significantly associated with atopic disease and relevant allergic indices. CONCLUSIONS: Polymorphisms in CD11a critically influence TH2 cell homing and diverse TH2-dependent immunopathologic states in mice and potentially influence the expression of human allergic disease.


Subject(s)
Aspergillus niger/immunology , CD11a Antigen/genetics , Hypersensitivity/immunology , Leishmania major/immunology , Leishmaniasis, Cutaneous/immunology , Pulmonary Aspergillosis/immunology , Th2 Cells/immunology , Animals , Cell Adhesion/genetics , Cell Movement/genetics , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Polymorphism, Genetic , Th1-Th2 Balance
9.
J Biol Chem ; 285(39): 30139-49, 2010 Sep 24.
Article in English | MEDLINE | ID: mdl-20630862

ABSTRACT

MicroRNAs (miRNAs) are short, non-coding RNAs that target and silence protein coding genes through 3'-UTR elements. Evidence increasingly assigns an immunosuppressive role for miRNAs in immunity, but relatively few miRNAs have been studied, and an overall understanding of the importance of these regulatory transcripts in complex in vivo systems is lacking. Here we have applied multiple technologies to globally analyze miRNA expression and function in allergic lung disease, an experimental model of asthma. Deep sequencing and microarray analyses of the mouse lung short RNAome revealed numerous extant and novel miRNAs and other transcript classes. Similar to mRNAs, lung miRNA expression changed dynamically during the transition from the naive to the allergic state, suggesting numerous functional relationships. A possible role for miRNA editing in altering the lung mRNA target repertoire was also identified. Multiple members of the highly conserved let-7 miRNA family were the most abundant lung miRNAs, and we confirmed in vitro that interleukin 13 (IL-13), a cytokine essential for expression for allergic lung disease, is regulated by mmu-let-7a. However, inhibition of let-7 miRNAs in vivo using a locked nucleic acid profoundly inhibited production of allergic cytokines and the disease phenotype. Our findings thus reveal unexpected complexity in the miRNAome underlying allergic lung disease and demonstrate a proinflammatory role for let-7 miRNAs.


Subject(s)
Asthma/metabolism , Interleukin-13/biosynthesis , MicroRNAs/metabolism , Animals , Asthma/genetics , Disease Models, Animal , Humans , Inflammation/genetics , Inflammation/metabolism , Interleukin-13/genetics , Mice , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL