Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 12(5): e0010624, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38534170

ABSTRACT

Plant-pathogenic bacteria cause numerous diseases in host plants and can result in serious damage. Timely and accurate diagnostic techniques are, therefore, crucial. While advances in molecular techniques have led to diagnostic systems able to distinguish known plant pathogens at the species or strain level, systems covering larger categories are mostly lacking. In this study, a specific and universal LAMP-based diagnostic system was developed for phytoplasmas, a large group of insect-borne plant-pathogenic bacteria that cause significant agricultural losses worldwide. Targeting the 23S rRNA gene of phytoplasma, the newly designed primer set CaPU23S-4 detected 31 'Candidatus Phytoplasma' tested within 30 min. This primer set also showed high specificity, without false-positive results for other bacteria (including close relatives of phytoplasmas) or healthy plants. The detection sensitivity was ~10,000 times higher than that of PCR methods for phytoplasma detection. A simple, rapid method of DNA extraction, by boiling phytoplasma-infected tissues, was developed as well. When used together with the universal LAMP assay, it enabled the prompt and accurate detection of phytoplasmas from plants and insects. The results demonstrate the potential of the 23S rRNA gene as a versatile target for the LAMP-based universal detection of bacteria at the genus level and provide a novel avenue for exploring this gene as molecular marker for phytoplasma presence detection.IMPORTANCEPhytoplasmas are associated with economically important diseases in crops worldwide, including lethal yellowing of coconut palm, "flavescence dorée" and "bois noir" of grapevine, X-disease in stone fruits, and white leaf and grassy shoot in sugarcane. Numerous LAMP-based diagnostic assays, mostly targeting the 16S rRNA gene, have been reported for phytoplasmas. However, these assays can only detect a limited number of 'Candidatus Phytoplasma' species, whereas the genus includes at least 50 of these species. In this study, a universal, specific, and rapid diagnostic system was developed that can detect all provisionally classified phytoplasmas within 1 h by combining the LAMP technique targeting the 23S rRNA gene with a simple method for DNA extraction. This diagnostic system will facilitate the on-site detection of phytoplasmas and may aid in the discovery of new phytoplasma-associated diseases and putative insect vectors, irrespective of the availability of infrastructure and experimental resources.


Subject(s)
DNA, Bacterial , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Phytoplasma , Plant Diseases , RNA, Ribosomal, 23S , Phytoplasma/genetics , Phytoplasma/classification , Phytoplasma/isolation & purification , Nucleic Acid Amplification Techniques/methods , RNA, Ribosomal, 23S/genetics , Plant Diseases/microbiology , DNA, Bacterial/genetics , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity , DNA Primers/genetics , Animals , Plants/microbiology
2.
J Virol ; 97(6): e0022123, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37199623

ABSTRACT

Plant viruses depend on a number of host factors for successful infection. Deficiency of critical host factors confers recessively inherited viral resistance in plants. For example, loss of Essential for poteXvirus Accumulation 1 (EXA1) in Arabidopsis thaliana confers resistance to potexviruses. However, the molecular mechanism of how EXA1 assists potexvirus infection remains largely unknown. Previous studies reported that the salicylic acid (SA) pathway is upregulated in exa1 mutants, and EXA1 modulates hypersensitive response-related cell death during EDS1-dependent effector-triggered immunity. Here, we show that exa1-mediated viral resistance is mostly independent of SA and EDS1 pathways. We demonstrate that Arabidopsis EXA1 interacts with three members of the eukaryotic translation initiation factor 4E (eIF4E) family, eIF4E1, eIFiso4E, and novel cap-binding protein (nCBP), through the eIF4E-binding motif (4EBM). Expression of EXA1 in exa1 mutants restored infection by the potexvirus Plantago asiatica mosaic virus (PlAMV), but EXA1 with mutations in 4EBM only partially restored infection. In virus inoculation experiments using Arabidopsis knockout mutants, EXA1 promoted PlAMV infection in concert with nCBP, but the functions of eIFiso4E and nCBP in promoting PlAMV infection were redundant. By contrast, the promotion of PlAMV infection by eIF4E1 was, at least partially, EXA1 independent. Taken together, our results imply that the interaction of EXA1-eIF4E family members is essential for efficient PlAMV multiplication, although specific roles of three eIF4E family members in PlAMV infection differ. IMPORTANCE The genus Potexvirus comprises a group of plant RNA viruses, including viruses that cause serious damage to agricultural crops. We previously showed that loss of Essential for poteXvirus Accumulation 1 (EXA1) in Arabidopsis thaliana confers resistance to potexviruses. EXA1 may thus play a critical role in the success of potexvirus infection; hence, elucidation of its mechanism of action is crucial for understanding the infection process of potexviruses and for effective viral control. Previous studies reported that loss of EXA1 enhances plant immune responses, but our results indicate that this is not the primary mechanism of exa1-mediated viral resistance. Here, we show that Arabidopsis EXA1 assists infection by the potexvirus Plantago asiatica mosaic virus (PlAMV) by interacting with the eukaryotic translation initiation factor 4E family. Our results imply that EXA1 contributes to PlAMV multiplication by regulating translation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Eukaryotic Initiation Factor-4E , Plant Diseases , Potexvirus , Arabidopsis/metabolism , Arabidopsis/virology , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Plant Diseases/genetics , Potexvirus/physiology , Arabidopsis Proteins/metabolism , Disease Resistance/genetics , Protein Binding , Amino Acid Motifs , Gene Deletion , Plant Cells/virology , Protein Biosynthesis/genetics
3.
Front Plant Sci ; 14: 1058059, 2023.
Article in English | MEDLINE | ID: mdl-37056494

ABSTRACT

To understand protein function deeply, it is important to identify how it interacts physically with its target. Phyllogen is a phyllody-inducing effector that interacts with the K domain of plant MADS-box transcription factors (MTFs), which is followed by proteasome-mediated degradation of the MTF. Although several amino acid residues of phyllogen have been identified as being responsible for the interaction, the exact interface of the interaction has not been elucidated. In this study, we comprehensively explored interface residues based on random mutagenesis using error-prone PCR. Two novel residues, at which mutations enhanced the affinity of phyllogen to MTF, were identified. These residues, and all other known interaction-involved residues, are clustered together at the surface of the protein structure of phyllogen, indicating that they constitute the interface of the interaction. Moreover, in silico structural prediction of the protein complex using ColabFold suggested that phyllogen interacts with the K domain of MTF via the putative interface. Our study facilitates an understanding of the interaction mechanisms between phyllogen and MTF.

4.
Arch Virol ; 168(2): 57, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36617596

ABSTRACT

We detected a virus-like sequence in Cynanchum rostellatum leaves showing yellow mottle symptoms, found in Tokyo, Japan. RNA-Seq analysis revealed that the complete nucleotide sequence of the virus genome was 5,878 nucleotides in length and that it contained seven open reading frames (ORFs) specific to members of the genus Polerovirus. Accordingly, phylogenetic analysis revealed that the virus clustered with poleroviruses in the family Solemoviridae. The amino acid sequence identity values obtained by comparison of the deduced proteins of this virus and those of known members of the genus Polerovirus were lower than 90%, which is the species demarcation criterion of the taxon. The results indicate that this virus is a novel member of the genus Polerovirus, for which the name "cynanchum yellow mottle-associated virus" is proposed.


Subject(s)
Cynanchum , Luteoviridae , Luteoviridae/genetics , Cynanchum/genetics , Phylogeny , RNA, Viral/genetics , Plant Diseases , Genome, Viral , Open Reading Frames
5.
Plant Cell ; 34(5): 1709-1723, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35234248

ABSTRACT

Plant pathogenic bacteria have developed effectors to manipulate host cell functions to facilitate infection. A certain number of effectors use the conserved ubiquitin-proteasome system in eukaryotic to proteolyze targets. The proteasome utilization mechanism is mainly mediated by ubiquitin interaction with target proteins destined for degradation. Phyllogens are a family of protein effectors produced by pathogenic phytoplasmas that transform flowers into leaves in diverse plants. Here, we present a noncanonical mechanism for phyllogen action that involves the proteasome and is ubiquitin-independent. Phyllogens induce proteasomal degradation of floral MADS-box transcription factors (MTFs) in the presence of RADIATION-SENSITIVE23 (RAD23) shuttle proteins, which recruit ubiquitinated proteins to the proteasome. Intracellular localization analysis revealed that phyllogen induced colocalization of MTF with RAD23. The MTF/phyllogen/RAD23 ternary protein complex was detected not only in planta but also in vitro in the absence of ubiquitin, showing that phyllogen directly mediates interaction between MTF and RAD23. A Lys-less nonubiquitinated phyllogen mutant induced degradation of MTF or a Lys-less mutant of MTF. Furthermore, the method of sequential formation of the MTF/phyllogen/RAD23 protein complex was elucidated, first by MTF/phyllogen interaction and then RAD23 recruitment. Phyllogen recognized both the evolutionarily conserved tetramerization region of MTF and the ubiquitin-associated domain of RAD23. Our findings indicate that phyllogen functionally mimics ubiquitin as a mediator between MTF and RAD23.


Subject(s)
Phytoplasma , Saccharomyces cerevisiae Proteins , Flowers/metabolism , Phytoplasma/metabolism , Plants/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin/metabolism
6.
Mol Plant Pathol ; 21(10): 1322-1336, 2020 10.
Article in English | MEDLINE | ID: mdl-32813310

ABSTRACT

Flower malformation represented by phyllody is a common symptom of phytoplasma infection induced by a novel family of phytoplasma effectors called phyllogens. Despite the accumulation of functional and structural phyllogen information, the molecular mechanisms of phyllody have not yet been integrated with their evolutionary aspects due to the limited data on their homologs across diverse phytoplasma lineages. Here, we developed a novel universal PCR-based approach to identify 25 phytoplasma phyllogens related to nine "Candidatus Phytoplasma" species, including four species whose phyllogens have not yet been identified. Phylogenetic analyses showed that the phyllogen family consists of four groups (phyl-A, -B, -C, and -D) and that the evolutionary relationships of phyllogens were significantly distinct from those of phytoplasmas, suggesting that phyllogens were transferred horizontally among phytoplasma strains and species. Although phyllogens belonging to the phyl-A, -C, and -D groups induced phyllody, the phyl-B group lacked the ability to induce phyllody. Comparative functional analyses of phyllogens revealed that a single amino acid polymorphism in phyl-B group phyllogens prevented interactions between phyllogens and A- and E-class MADS domain transcription factors (MTFs), resulting in the inability to degrade several MTFs and induce phyllody. Our finding of natural variation in the function of phytoplasma effectors provides new insights into molecular mechanisms underlying the aetiology of phytoplasma diseases.


Subject(s)
Bacterial Proteins , Phytoplasma , Amino Acids/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Flowers/growth & development , Flowers/microbiology , Gene Expression Regulation, Bacterial , Gene Transfer, Horizontal , Genes, Bacterial , MADS Domain Proteins/metabolism , Phylogeny , Phytoplasma/genetics , Phytoplasma/metabolism , Phytoplasma/pathogenicity , Plant Diseases/etiology , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Transcription Factors/metabolism
7.
Sci Rep ; 10(1): 4291, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32152370

ABSTRACT

Phytoplasmas are transmitted by insect vectors in a persistent propagative manner; however, detailed movements and multiplication patterns of phytoplasmas within vectors remain elusive. In this study, spatiotemporal dynamics of onion yellows (OY) phytoplasma in its vector Macrosteles striifrons were investigated by immunohistochemistry-based 3D imaging, whole-mount fluorescence staining, and real-time quantitative PCR. The results indicated that OY phytoplasmas entered the anterior midgut epithelium by seven days after acquisition start (daas), then moved to visceral muscles surrounding the midgut and to the hemocoel at 14-21 daas; finally, OY phytoplasmas entered into type III cells of salivary glands at 21-28 daas. The anterior midgut of the alimentary canal and type III cells of salivary glands were identified as the major sites of OY phytoplasma infection. Fluorescence staining further revealed that OY phytoplasmas spread along the actin-based muscle fibers of visceral muscles and accumulated on the surfaces of salivary gland cells. This accumulation would be important for phytoplasma invasion into salivary glands, and thus for successful insect transmission. This study demonstrates the spatiotemporal dynamics of phytoplasmas in insect vectors. The findings from this study will aid in understanding of the underlying mechanism of insect-borne plant pathogen transmission.


Subject(s)
Digestive System/microbiology , Insect Vectors/microbiology , Insecta/physiology , Onions/microbiology , Phytoplasma/growth & development , Plant Diseases/microbiology , Salivary Glands/microbiology , Animals , Host-Pathogen Interactions , Insecta/microbiology , Phytoplasma/classification , Spatio-Temporal Analysis
8.
Biochem Biophys Res Commun ; 513(4): 952-957, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31010685

ABSTRACT

Phytoplasmas are plant pathogenic bacteria that often induce unique phyllody symptoms in which the floral organs are transformed into leaf-like structures. Recently, a novel family of bacterial effector genes, called phyllody-inducing genes (phyllogens), was identified as being involved in the induction of phyllody by degrading floral MADS-domain transcription factors (MTFs). However, the structural characteristics of phyllogens are unknown. In this study, we elucidated the crystal structure of PHYL1OY, a phyllogen of 'Candidatus Phytoplasma asteris' onion yellows strain, at a resolution of 2.4 Å. The structure of PHYL1 consisted of two α-helices connected by a random loop in a coiled-coil manner. In both α-helices, the distributions of hydrophobic residues were conserved among phyllogens. Amino acid insertion mutations into either α-helix resulted in the loss of phyllody-inducing activity and the ability of the phyllogen to degrade floral MTF. In contrast, the same insertion in the loop region did not affect either activity, indicating that both conserved α-helices are important for the function of phyllogens. This is the first report on the crystal structure of an effector protein of phytoplasmas.


Subject(s)
Bacterial Proteins/chemistry , Phytoplasma/chemistry , Crystallography, X-Ray , Molecular Structure , Plant Diseases/microbiology , Protein Conformation, alpha-Helical
9.
Microbiology (Reading) ; 164(8): 1048-1058, 2018 08.
Article in English | MEDLINE | ID: mdl-29952745

ABSTRACT

Phytoplasmas are plant-pathogenic bacteria that infect many important crops and cause serious economic losses worldwide. However, owing to an inability to culture phytoplasmas, screening of antimicrobials on media is difficult. The only antimicrobials being used to control phytoplasmas are tetracycline-class antibiotics. In this study, we developed an accurate and efficient screening method to evaluate the effects of antimicrobials using an in vitro plant-phytoplasma co-culture system. We tested 40 antimicrobials, in addition to tetracycline, and four of these (doxycycline, chloramphenicol, thiamphenicol and rifampicin) decreased the accumulation of 'Candidatus (Ca.) Phytoplasma asteris'. The phytoplasma was eliminated from infected plants by the application of both tetracycline and rifampicin. We also compared nucleotide sequences of rRNAs and amino acid sequences of proteins targeted by antimicrobials between phytoplasmas and other bacteria. Since antimicrobial target sequences were conserved among various phytoplasma species, the antimicrobials that decreased accumulation of 'Ca. P. asteris' may also have been effective against other phytoplasma species. These approaches will provide new strategies for phytoplasma disease management.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chrysanthemum/microbiology , Phytoplasma/drug effects , Plant Diseases/microbiology , Chloramphenicol/pharmacology , Coculture Techniques , Doxycycline/pharmacology , Drug Combinations , Microbial Sensitivity Tests , RNA, Ribosomal/genetics , Rifampin/pharmacology , Tetracycline/pharmacology , Thiamphenicol/pharmacology
10.
Int J Syst Evol Microbiol ; 68(1): 170-175, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29134937

ABSTRACT

Bogia coconut syndrome (BCS) is one of the lethal yellowing (LY)-type diseases associated with phytoplasma presence that are seriously threatening coconut cultivation worldwide. It has recently emerged, and is rapidly spreading in northern parts of the island of New Guinea. BCS-associated phytoplasmas collected in different regions were compared in terms of 16S rRNA gene sequences, revealing high identity among them represented by strain BCS-BoR. Comparative analysis of the 16S rRNA gene sequences revealed that BCS-BoR shared less than a 97.5 % similarity with other species of 'Candidatus Phytoplasma', with a maximum value of 96.08 % (with strain LY; GenBank accession no. U18747). This result indicates the necessity and propriety of a novel taxon for BCS phytoplasmas according to the recommendations of the IRPCM. Phylogenetic analysis was also conducted on 16S rRNA gene sequences, resulting in a monophyletic cluster composed of BCS-BoR and other LY-associated phytoplasmas. Other phytoplasmas on the island of New Guinea associated with banana wilt and arecanut yellow leaf diseases showed high similarities to BCS-BoR and were closely related to BCS phytoplasmas. Based on the uniqueness of their 16S rRNA gene sequences, a novel taxon 'Ca.Phytoplasma noviguineense' is proposed for these phytoplasmas found on the island of New Guinea, with strain BCS-BoR (GenBank accession no. LC228755) as the reference strain. The novel taxon is described in detail, including information on the symptoms of associated diseases and additional genetic features of the secY gene and rp operon.


Subject(s)
Cocos/microbiology , Musa/microbiology , Phylogeny , Phytoplasma/classification , Plant Diseases/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Islands , New Guinea , Phytoplasma/genetics , Phytoplasma/isolation & purification , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
11.
DNA Cell Biol ; 36(12): 1081-1092, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29039971

ABSTRACT

Phytoplasmas are obligate intracellular parasitic bacteria that infect both plants and insects. We previously identified the sigma factor RpoD-dependent consensus promoter sequence of phytoplasma. However, the genome-wide landscape of RNA transcripts, including non-coding RNAs (ncRNAs) and RpoD-independent promoter elements, was still unknown. In this study, we performed an improved RNA sequencing analysis for genome-wide identification of the transcription start sites (TSSs) and the consensus promoter sequences. We constructed cDNA libraries using a random adenine/thymine hexamer primer, in addition to a conventional random hexamer primer, for efficient sequencing of 5'-termini of AT-rich phytoplasma RNAs. We identified 231 TSSs, which were classified into four categories: mRNA TSSs, internal sense TSSs, antisense TSSs (asTSSs), and orphan TSSs (oTSSs). The presence of asTSSs and oTSSs indicated the genome-wide transcription of ncRNAs, which might act as regulatory ncRNAs in phytoplasmas. This is the first description of genome-wide phytoplasma ncRNAs. Using a de novo motif discovery program, we identified two consensus motif sequences located upstream of the TSSs. While one was almost identical to the RpoD-dependent consensus promoter sequence, the other was an unidentified novel motif, which might be recognized by another transcription initiation factor. These findings are valuable for understanding the regulatory mechanism of phytoplasma gene expression.


Subject(s)
Phytoplasma/genetics , Animals , Base Sequence , Conserved Sequence , Gene Library , Genome, Bacterial , Insecta/microbiology , Phytoplasma/pathogenicity , Plants/microbiology , Promoter Regions, Genetic , RNA, Bacterial/genetics , RNA, Untranslated/genetics , Sequence Analysis, RNA , Transcription Initiation Site
12.
PLoS Pathog ; 13(6): e1006463, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28640879

ABSTRACT

Plant virus movement proteins (MPs) localize to plasmodesmata (PD) to facilitate virus cell-to-cell movement. Numerous studies have suggested that MPs use a pathway either through the ER or through the plasma membrane (PM). Furthermore, recent studies reported that ER-PM contact sites and PM microdomains, which are subdomains found in the ER and PM, are involved in virus cell-to-cell movement. However, functional relationship of these subdomains in MP traffic to PD has not been described previously. We demonstrate here the intracellular trafficking of fig mosaic virus MP (MPFMV) using live cell imaging, focusing on its ER-directing signal peptide (SPFMV). Transiently expressed MPFMV was distributed predominantly in PD and patchy microdomains of the PM. Investigation of ER translocation efficiency revealed that SPFMV has quite low efficiency compared with SPs of well-characterized plant proteins, calreticulin and CLAVATA3. An MPFMV mutant lacking SPFMV localized exclusively to the PM microdomains, whereas SP chimeras, in which the SP of MPFMV was replaced by an SP of calreticulin or CLAVATA3, localized exclusively to the nodes of the ER, which was labeled with Arabidopsis synaptotagmin 1, a major component of ER-PM contact sites. From these results, we speculated that the low translocation efficiency of SPFMV contributes to the generation of ER-translocated and the microdomain-localized populations, both of which are necessary for PD localization. Consistent with this hypothesis, SP-deficient MPFMV became localized to PD when co-expressed with an SP chimera. Here we propose a new model for the intracellular trafficking of a viral MP. A substantial portion of MPFMV that fails to be translocated is transferred to the microdomains, whereas the remainder of MPFMV that is successfully translocated into the ER subsequently localizes to ER-PM contact sites and plays an important role in the entry of the microdomain-localized MPFMV into PD.


Subject(s)
Arabidopsis/virology , Cell Membrane/virology , Endoplasmic Reticulum/metabolism , Plant Viral Movement Proteins/metabolism , Plasmodesmata/virology , Tobacco Mosaic Virus/isolation & purification , Arabidopsis/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/virology , Membrane Microdomains/metabolism , Membrane Microdomains/virology , Microtubules/metabolism , Microtubules/virology , Plasmodesmata/metabolism , Protein Transport/physiology , Nicotiana/virology , Tobacco Mosaic Virus/metabolism
13.
J Exp Bot ; 68(11): 2799-2811, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28505304

ABSTRACT

ABCE-class MADS domain transcription factors (MTFs) are key regulators of floral organ development in angiosperms. Aberrant expression of these genes can result in abnormal floral traits such as phyllody. Phyllogen is a virulence factor conserved in phytoplasmas, plant pathogenic bacteria of the class Mollicutes. It triggers phyllody in Arabidopsis thaliana by inducing degradation of A- and E-class MTFs. However, it is still unknown whether phyllogen can induce phyllody in plants other than A. thaliana, although phytoplasma-associated phyllody symptoms are observed in a broad range of angiosperms. In this study, phyllogen was shown to cause phyllody phenotypes in several eudicot species belonging to three different families. Moreover, phyllogen can interact with MTFs of not only angiosperm species including eudicots and monocots but also gymnosperms and a fern, and induce their degradation. These results suggest that phyllogen induces phyllody in angiosperms and inhibits MTF function in diverse plant species.


Subject(s)
Bacterial Toxins , MADS Domain Proteins/metabolism , Phytoplasma/pathogenicity , Plant Diseases/microbiology , Plant Proteins/metabolism , Plants/microbiology , Virulence Factors/physiology , Bacterial Toxins/genetics , Cycadopsida/genetics , Cycadopsida/microbiology , Ferns/genetics , Ferns/microbiology , Flowers/microbiology , Gene Expression Regulation, Plant , Magnoliopsida/genetics , Magnoliopsida/microbiology , Phytoplasma/physiology , Proteolysis , Virulence Factors/genetics
14.
Sci Rep ; 7: 39678, 2017 01 06.
Article in English | MEDLINE | ID: mdl-28059075

ABSTRACT

One of the important antiviral genetic strategies used in crop breeding is recessive resistance. Two eukaryotic translation initiation factor 4E family genes, eIF4E and eIFiso4E, are the most common recessive resistance genes whose absence inhibits infection by plant viruses in Potyviridae, Carmovirus, and Cucumovirus. Here, we show that another eIF4E family gene, nCBP, acts as a novel recessive resistance gene in Arabidopsis thaliana toward plant viruses in Alpha- and Betaflexiviridae. We found that infection by Plantago asiatica mosaic virus (PlAMV), a potexvirus, was delayed in ncbp mutants of A. thaliana. Virus replication efficiency did not differ between an ncbp mutant and a wild type plant in single cells, but viral cell-to-cell movement was significantly delayed in the ncbp mutant. Furthermore, the accumulation of triple-gene-block protein 2 (TGB2) and TGB3, the movement proteins of potexviruses, decreased in the ncbp mutant. Inoculation experiments with several viruses showed that the accumulation of viruses encoding TGBs in their genomes decreased in the ncbp mutant. These results indicate that nCBP is a novel member of the eIF4E family recessive resistance genes whose loss impairs viral cell-to-cell movement by inhibiting the efficient accumulation of TGB2 and TGB3.


Subject(s)
Arabidopsis/genetics , Arabidopsis/virology , Eukaryotic Initiation Factor-4E/genetics , Plant Proteins/genetics , Potexvirus/pathogenicity , Cell Movement , Disease Resistance , Mutation , Protein Isoforms/genetics , Viral Proteins/metabolism
15.
Plant J ; 88(1): 120-131, 2016 10.
Article in English | MEDLINE | ID: mdl-27402258

ABSTRACT

One of the plant host resistance machineries to viruses is attributed to recessive alleles of genes encoding critical host factors for virus infection. This type of resistance, also referred to as recessive resistance, is useful for revealing plant-virus interactions and for breeding antivirus resistance in crop plants. Therefore, it is important to identify a novel host factor responsible for robust recessive resistance to plant viruses. Here, we identified a mutant from an ethylmethane sulfonate (EMS)-mutagenized Arabidopsis population which confers resistance to plantago asiatica mosaic virus (PlAMV, genus Potexvirus). Based on map-based cloning and single nucleotide polymorphism analysis, we identified a premature termination codon in a functionally unknown gene containing a GYF domain, which binds to proline-rich sequences in eukaryotes. Complementation analyses and robust resistance to PlAMV in a T-DNA mutant demonstrated that this gene, named Essential for poteXvirus Accumulation 1 (EXA1), is indispensable for PlAMV infection. EXA1 contains a GYF domain and a conserved motif for interaction with eukaryotic translation initiation factor 4E (eIF4E), and is highly conserved among monocot and dicot species. Analysis using qRT-PCR and immunoblotting revealed that EXA1 was expressed in all tissues, and was not transcriptionally responsive to PlAMV infection in Arabidopsis plants. Moreover, accumulation of PlAMV and a PlAMV-derived replicon was drastically diminished in the initially infected cells by the EXA1 deficiency. Accumulation of two other potexviruses also decreased in exa1-1 mutant plants. Our results provided a functional annotation to GYF domain-containing proteins by revealing the function of the highly conserved EXA1 gene in plant-virus interactions.


Subject(s)
Arabidopsis/metabolism , Arabidopsis/virology , Plant Diseases/virology , Plant Viruses/pathogenicity , Arabidopsis/genetics , Plant Diseases/genetics
16.
Genome Announc ; 4(3)2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27284130

ABSTRACT

The 5'-terminal genomic sequence of Cherry virus A (CVA) has long been unknown. We determined the first complete genome sequence of an apricot isolate of CVA (7,434 nucleotides [nt]). The 5'-untranslated region was 107 nt in length, which was 53 nt longer than those of known CVA sequences.

17.
Genome Announc ; 4(2)2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27034476

ABSTRACT

Hydrangea ringspot virus (HdRSV) is a plant RNA virus, naturally infectingHydrangea macrophylla Here, we report the first genomic sequences of two HdRSV isolates from hydrangea plants in Japan. The overall nucleotide sequences of these Japanese isolates were 96.0 to 96.3% identical to those of known European isolates.

SELECTION OF CITATIONS
SEARCH DETAIL
...