Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Phys Rev Lett ; 132(22): 223402, 2024 May 31.
Article En | MEDLINE | ID: mdl-38877935

Symmetry-breaking phase transitions are central to our understanding of states of matter. When a continuous symmetry is spontaneously broken, new excitations appear that are tied to fluctuations of the order parameter. In superconductors and fermionic superfluids, the phase and amplitude can fluctuate independently, giving rise to two distinct collective branches. However, amplitude fluctuations are difficult to both generate and measure, as they do not couple directly to the density of fermions and have only been observed indirectly to date. Here, we excite amplitude oscillations in an atomic Fermi gas with resonant interactions by an interaction quench. Exploiting the sensitivity of Bragg spectroscopy to the amplitude of the order parameter, we measure the time-resolved response of the atom cloud, directly revealing amplitude oscillations at twice the frequency of the gap. The magnitude of the oscillatory response shows a strong temperature dependence, and the oscillations appear to decay faster than predicted by time-dependent Bardeen-Cooper-Schrieffer theory applied to our experimental setup.

2.
Phys Rev Lett ; 132(13): 133402, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38613304

We resolve the unexpected and long-standing disagreement between experiment and theory in the Efimovian three-body spectrum of ^{7}Li, commonly referred to as the lithium few-body puzzle. Our results show that the discrepancy arises out of the presence of strong nonuniversal three-body spin-exchange interactions, which enact an effective inflation of the universal Efimov spectrum. This conclusion is obtained from a thorough numerical solution of the quantum mechanical three-body problem, including precise interatomic interactions and all spin degrees of freedom for three alkali-metal atoms. Our results show excellent agreement with the experimental data regarding both the Efimov spectrum and the absolute rate constants of three-body recombination, and in addition reveal a general product propensity for such triatomic reactions in the Paschen-Back regime, stemming from Wigner's spin conservation rule.

3.
Phys Rev Lett ; 128(2): 020401, 2022 Jan 14.
Article En | MEDLINE | ID: mdl-35089744

In an atomic Bose-Einstein condensate quenched to the unitary regime, we predict the sequential formation of a significant fraction of condensed pairs and triples. At short distances, we demonstrate the two-body and Efimovian character of the condensed pairs and triples, respectively. As the system evolves, their size becomes comparable to the interparticle distance, such that many-body effects become significant. The structure of the condensed triples depends on the size of Efimov states compared with density scales. Unexpectedly, we find universal condensed triples in the limit where these scales are well separated. Our findings provide a new framework for understanding dynamics in the unitary regime as the Bose-Einstein condensation of few-body composites.

4.
Phys Rev Lett ; 124(14): 143401, 2020 Apr 10.
Article En | MEDLINE | ID: mdl-32338969

We study the three-body scattering hypervolume D of atoms whose scattering length a is on the order of or smaller than the typical range r_{vdW} of the van der Waals attraction. We find that the real part of D behaves universally in this weakly interacting regime (|a|/r_{vdW}≲1) in the absence of trimer resonances. This universality originates from hard-spherelike collisions that dominate elastic three-body scattering. We use this result to make quantitative predictions for the thermodynamics and elementary excitations of an atomic Bose-Einstein condensate in the vicinity of a quantum tricritical point, including quantum droplets stabilized by effective three-body interactions.

5.
Phys Rev Lett ; 104(5): 053202, 2010 Feb 05.
Article En | MEDLINE | ID: mdl-20366760

We study the widths of interspecies Feshbach resonances in a mixture of the fermionic quantum gases 6Li and 40K. We develop a model to calculate the width and position of all available Feshbach resonances for a system. Using the model, we select the optimal resonance to study the {6}Li/{40}K mixture. Experimentally, we obtain the asymmetric Fano line shape of the interspecies elastic cross section by measuring the distillation rate of 6Li atoms from a potassium-rich 6Li/{40}K mixture as a function of magnetic field. This provides us with the first experimental determination of the width of a resonance in this mixture, DeltaB=1.5(5) G. Our results offer good perspectives for the observation of universal crossover physics using this mass-imbalanced fermionic mixture.

6.
Phys Rev Lett ; 100(5): 053201, 2008 Feb 08.
Article En | MEDLINE | ID: mdl-18352370

We report on the observation of Feshbach resonances in an ultracold mixture of two fermionic species, (6)Li and (40)K. The experimental data are interpreted using a simple asymptotic bound state model and full coupled channels calculations. This unambiguously assigns the observed resonances in terms of various s- and p-wave molecular states and fully characterizes the ground-state scattering properties in any combination of spin states.

7.
Phys Rev Lett ; 93(5): 050401, 2004 Jul 30.
Article En | MEDLINE | ID: mdl-15323676

We report Bose-Einstein condensation of weakly bound 6Li2 molecules in a crossed optical trap near a Feshbach resonance. We measure a molecule-molecule scattering length of 170(+100)(-60) nm at 770 G, in good agreement with theory. We study the 2D expansion of the cloud and show deviation from hydrodynamic behavior in the BEC-BCS crossover region.

8.
Phys Rev Lett ; 91(24): 240401, 2003 Dec 12.
Article En | MEDLINE | ID: mdl-14683093

We create weakly bound Li2 molecules from a degenerate two component Fermi gas by sweeping a magnetic field across a Feshbach resonance. The atom-molecule transfer efficiency can reach 85% and is studied as a function of magnetic field and initial temperature. The bosonic molecules remain trapped for 0.5 s and their temperature is within a factor of 2 from the Bose-Einstein condensation temperature. A thermodynamical model reproduces qualitatively the experimental findings.

9.
Phys Rev Lett ; 91(2): 020402, 2003 Jul 11.
Article En | MEDLINE | ID: mdl-12906466

We investigate the strongly interacting regime in an optically trapped 6Li Fermi mixture near a Feshbach resonance. The resonance is found at 800(40) G in good agreement with theory. Anisotropic expansion of the gas is interpreted by collisional hydrodynamics. We observe an unexpected and large shift (80 G) between the resonance peak and both the maximum of atom loss and the change of sign of the interaction energy.

10.
Phys Rev Lett ; 89(18): 180401, 2002 Oct 28.
Article En | MEDLINE | ID: mdl-12398584

In a recent experiment, a Feshbach scattering resonance was exploited to observe Ramsey fringes in a 85Rb Bose-Einstein condensate. The oscillation frequency corresponded to the binding energy of the molecular state. We show that the observations are remarkably consistent with predictions of a resonance field theory in which the fringes arise from oscillations between atoms and molecules.

11.
Phys Rev Lett ; 88(9): 090402, 2002 Mar 04.
Article En | MEDLINE | ID: mdl-11863985

We predict a direct and observable signature of the superfluid phase in a quantum Fermi gas, in a temperature regime already accessible in current experiments. We apply the theory of resonance superfluidity to a gas confined in a harmonic potential and demonstrate that a significant increase in density will be observed in the vicinity of the trap center.

12.
Phys Rev Lett ; 88(9): 093201, 2002 Mar 04.
Article En | MEDLINE | ID: mdl-11864003

Combining the measured binding energies of four of the most weakly bound rovibrational levels of the 87Rb2 molecule with results of two other recent high-precision experiments, we obtain exceptionally strong constraints on the atomic interaction parameters in a highly model independent analysis. The comparison of (85)Rb and (87)Rb data, where the two isotopes are related by a mass scaling procedure, plays a crucial role. We predict scattering lengths, clock shifts, and Feshbach resonances with an unprecedented level of accuracy. Two of the Feshbach resonances occur at easily accessible magnetic fields in mixed-spin channels. One is related to a d-wave shape resonance.

...