Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; : e202400420, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563635

ABSTRACT

A diradical with engineered g-asymmetry was synthesized by grafting a nitroxide radical onto the [Y(Pc)2]⋅ radical platform. Various spectroscopic techniques and computational studies revealed that the electronic structures of the two spin systems remained minimally affected within the diradical system. Fluid-solution Electron Paramagnetic Resonance (EPR) experiments revealed a weak exchange coupling with |J| ~ 0.014 cm-1, subsequently rationalized by CAS-SCF calculations. Frozen solution continuous-wave (CW) EPR experiments showed a complicated and power-dependent spectrum that eluded analysis using the point-dipole model. Pulse EPR manipulations with varying microwave powers, or under varying magnetic fields, demonstrated that different resonances could be selectively enhanced or suppressed, based on their different tipping angles. In particular, Field-Swept Echo-Detected (FSED) spectra revealed absorptions of MW power-dependent intensities, while Field-Swept Spin Nutation (FSSN) experiments revealed two distinct Rabi frequencies. This study introduces a methodology to synthesize and characterize g-asymmetric two-spin systems, of interest in the implementation of spin-based CNOT gates.

2.
Chemistry ; 28(44): e202202128, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35866487

ABSTRACT

Invited for the cover of this issue is the group of Hiroshi Nishihara at Tokyo University of Science. The image depicts the moment of the growth of the second layer at the liquid-liquid interface to form a heterolaminated film. Read the full text of the article at 10.1002/chem.202201316.

3.
Chemistry ; 28(44): e202201316, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35695303

ABSTRACT

Recent studies on molecular 2D materials with high tunability of structure and function have focused mostly on the discovery of new precursors. Here, we demonstrate a facile one-pot synthesis of laminated 2D coordination polymer films comprising bis(terpyridine)iron and cobalt at a water/dichloromethane interface. Cross-sectional elemental mapping unveiled the stratum-like structure of the film and revealed that the second layer grows to the dichloromethane side below the first layer. Cyclic voltammetry clarified that the bottom layer mediates charge transfer between the top layer and the substrate in a narrow potential region of mixed-valence states. Furthermore, the bilayer film sandwiched by electrodes in a dry condition shows stable rectification character, and the barrier voltage corresponds to the redox potential difference between the two layers. This study introduces a new strategy for polymer design to explore the materials science of molecular 2D materials.

4.
Chem Commun (Camb) ; 56(25): 3677-3680, 2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32118239

ABSTRACT

A liquid/liquid interfacial method is used to synthesize a conjugated porous polymer nanofilm with a large domain size. Copper-catalyzed azide-alkyne cycloaddition between a triangular terminal alkyne and azide monomers at a water/dichloromethane interface generates a 1,2,3-triazole-linked polymer nanofilm featuring a large aspect ratio and robustness against heat and pH.

SELECTION OF CITATIONS
SEARCH DETAIL
...