Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Nature ; 618(7963): 126-133, 2023 Jun.
Article En | MEDLINE | ID: mdl-37225984

A spinal cord injury interrupts the communication between the brain and the region of the spinal cord that produces walking, leading to paralysis1,2. Here, we restored this communication with a digital bridge between the brain and spinal cord that enabled an individual with chronic tetraplegia to stand and walk naturally in community settings. This brain-spine interface (BSI) consists of fully implanted recording and stimulation systems that establish a direct link between cortical signals3 and the analogue modulation of epidural electrical stimulation targeting the spinal cord regions involved in the production of walking4-6. A highly reliable BSI is calibrated within a few minutes. This reliability has remained stable over one year, including during independent use at home. The participant reports that the BSI enables natural control over the movements of his legs to stand, walk, climb stairs and even traverse complex terrains. Moreover, neurorehabilitation supported by the BSI improved neurological recovery. The participant regained the ability to walk with crutches overground even when the BSI was switched off. This digital bridge establishes a framework to restore natural control of movement after paralysis.


Brain-Computer Interfaces , Brain , Electric Stimulation Therapy , Neurological Rehabilitation , Spinal Cord Injuries , Spinal Cord , Walking , Humans , Brain/physiology , Electric Stimulation Therapy/instrumentation , Electric Stimulation Therapy/methods , Quadriplegia/etiology , Quadriplegia/rehabilitation , Quadriplegia/therapy , Reproducibility of Results , Spinal Cord/physiology , Spinal Cord Injuries/complications , Spinal Cord Injuries/rehabilitation , Spinal Cord Injuries/therapy , Walking/physiology , Leg/physiology , Neurological Rehabilitation/instrumentation , Neurological Rehabilitation/methods , Male
2.
Nature ; 611(7936): 540-547, 2022 Nov.
Article En | MEDLINE | ID: mdl-36352232

A spinal cord injury interrupts pathways from the brain and brainstem that project to the lumbar spinal cord, leading to paralysis. Here we show that spatiotemporal epidural electrical stimulation (EES) of the lumbar spinal cord1-3 applied during neurorehabilitation4,5 (EESREHAB) restored walking in nine individuals with chronic spinal cord injury. This recovery involved a reduction in neuronal activity in the lumbar spinal cord of humans during walking. We hypothesized that this unexpected reduction reflects activity-dependent selection of specific neuronal subpopulations that become essential for a patient to walk after spinal cord injury. To identify these putative neurons, we modelled the technological and therapeutic features underlying EESREHAB in mice. We applied single-nucleus RNA sequencing6-9 and spatial transcriptomics10,11 to the spinal cords of these mice to chart a spatially resolved molecular atlas of recovery from paralysis. We then employed cell type12,13 and spatial prioritization to identify the neurons involved in the recovery of walking. A single population of excitatory interneurons nested within intermediate laminae emerged. Although these neurons are not required for walking before spinal cord injury, we demonstrate that they are essential for the recovery of walking with EES following spinal cord injury. Augmenting the activity of these neurons phenocopied the recovery of walking enabled by EESREHAB, whereas ablating them prevented the recovery of walking that occurs spontaneously after moderate spinal cord injury. We thus identified a recovery-organizing neuronal subpopulation that is necessary and sufficient to regain walking after paralysis. Moreover, our methodology establishes a framework for using molecular cartography to identify the neurons that produce complex behaviours.


Neurons , Paralysis , Spinal Cord Injuries , Spinal Cord , Walking , Animals , Humans , Mice , Neurons/physiology , Paralysis/genetics , Paralysis/physiopathology , Paralysis/therapy , Spinal Cord/cytology , Spinal Cord/physiology , Spinal Cord/physiopathology , Spinal Cord Injuries/genetics , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Walking/physiology , Electric Stimulation , Lumbosacral Region/innervation , Neurological Rehabilitation , Sequence Analysis, RNA , Gene Expression Profiling
3.
Nat Med ; 28(2): 260-271, 2022 02.
Article En | MEDLINE | ID: mdl-35132264

Epidural electrical stimulation (EES) targeting the dorsal roots of lumbosacral segments restores walking in people with spinal cord injury (SCI). However, EES is delivered with multielectrode paddle leads that were originally designed to target the dorsal column of the spinal cord. Here, we hypothesized that an arrangement of electrodes targeting the ensemble of dorsal roots involved in leg and trunk movements would result in superior efficacy, restoring more diverse motor activities after the most severe SCI. To test this hypothesis, we established a computational framework that informed the optimal arrangement of electrodes on a new paddle lead and guided its neurosurgical positioning. We also developed software supporting the rapid configuration of activity-specific stimulation programs that reproduced the natural activation of motor neurons underlying each activity. We tested these neurotechnologies in three individuals with complete sensorimotor paralysis as part of an ongoing clinical trial ( www.clinicaltrials.gov identifier NCT02936453). Within a single day, activity-specific stimulation programs enabled these three individuals to stand, walk, cycle, swim and control trunk movements. Neurorehabilitation mediated sufficient improvement to restore these activities in community settings, opening a realistic path to support everyday mobility with EES in people with SCI.


Spinal Cord Injuries , Spinal Cord Stimulation , Humans , Leg , Paralysis/rehabilitation , Spinal Cord/physiology , Spinal Cord Injuries/rehabilitation , Walking/physiology
4.
Nature ; 590(7845): 308-314, 2021 02.
Article En | MEDLINE | ID: mdl-33505019

Spinal cord injury (SCI) induces haemodynamic instability that threatens survival1-3, impairs neurological recovery4,5, increases the risk of cardiovascular disease6,7, and reduces quality of life8,9. Haemodynamic instability in this context is due to the interruption of supraspinal efferent commands to sympathetic circuits located in the spinal cord10, which prevents the natural baroreflex from controlling these circuits to adjust peripheral vascular resistance. Epidural electrical stimulation (EES) of the spinal cord has been shown to compensate for interrupted supraspinal commands to motor circuits below the injury11, and restored walking after paralysis12. Here, we leveraged these concepts to develop EES protocols that restored haemodynamic stability after SCI. We established a preclinical model that enabled us to dissect the topology and dynamics of the sympathetic circuits, and to understand how EES can engage these circuits. We incorporated these spatial and temporal features into stimulation protocols to conceive a clinical-grade biomimetic haemodynamic regulator that operates in a closed loop. This 'neuroprosthetic baroreflex' controlled haemodynamics for extended periods of time in rodents, non-human primates and humans, after both acute and chronic SCI. We will now conduct clinical trials to turn the neuroprosthetic baroreflex into a commonly available therapy for people with SCI.


Baroreflex , Biomimetics , Hemodynamics , Prostheses and Implants , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Animals , Disease Models, Animal , Female , Humans , Male , Neural Pathways , Primates , Rats , Rats, Inbred Lew , Sympathetic Nervous System/cytology , Sympathetic Nervous System/physiology
5.
Nature ; 563(7729): 65-71, 2018 11.
Article En | MEDLINE | ID: mdl-30382197

Spinal cord injury leads to severe locomotor deficits or even complete leg paralysis. Here we introduce targeted spinal cord stimulation neurotechnologies that enabled voluntary control of walking in individuals who had sustained a spinal cord injury more than four years ago and presented with permanent motor deficits or complete paralysis despite extensive rehabilitation. Using an implanted pulse generator with real-time triggering capabilities, we delivered trains of spatially selective stimulation to the lumbosacral spinal cord with timing that coincided with the intended movement. Within one week, this spatiotemporal stimulation had re-established adaptive control of paralysed muscles during overground walking. Locomotor performance improved during rehabilitation. After a few months, participants regained voluntary control over previously paralysed muscles without stimulation and could walk or cycle in ecological settings during spatiotemporal stimulation. These results establish a technological framework for improving neurological recovery and supporting the activities of daily living after spinal cord injury.


Biomedical Technology , Electric Stimulation Therapy , Paralysis/rehabilitation , Spinal Cord Injuries/rehabilitation , Walking/physiology , Activities of Daily Living , Computer Simulation , Electromyography , Epidural Space , Humans , Leg/innervation , Leg/physiology , Leg/physiopathology , Locomotion/physiology , Male , Motor Neurons/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Paralysis/physiopathology , Paralysis/surgery , Spinal Cord/cytology , Spinal Cord/physiology , Spinal Cord/physiopathology , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/surgery
...