Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(3)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35163143

ABSTRACT

Actions of symbiotic gut microbiota are in dynamic balance with the host's organism to maintain homeostasis. Many different factors have an impact on this relationship, including bacterial metabolites. Several substrates for their synthesis have been established, including tryptophan, an exogenous amino acid. Many biological processes are influenced by the action of tryptophan and its endogenous metabolites, serotonin, and melatonin. Recent research findings also provide evidence that gut bacteria-derived metabolites of tryptophan share the biological effects of their precursor. Thus, this review aims to investigate the biological actions of indole-3-propionic acid (IPA), a gut microbiota-derived metabolite of tryptophan. We searched PUBMED and Google Scholar databases to identify pre-clinical and clinical studies evaluating the impact of IPA on the health and pathophysiology of the immune, nervous, gastrointestinal and cardiovascular system in mammals. IPA exhibits a similar impact on the energetic balance and cardiovascular system to its precursor, tryptophan. Additionally, IPA has a positive impact on a cellular level, by preventing oxidative stress injury, lipoperoxidation and inhibiting synthesis of proinflammatory cytokines. Its synthesis can be diminished in the presence of different risk factors of atherosclerosis. On the other hand, protective factors, such as the introduction of a Mediterranean diet, tend to increase its plasma concentration. IPA seems to be a promising new target, linking gut health with the cardiovascular system.


Subject(s)
Atherosclerosis/prevention & control , Bacteria/metabolism , Cardiovascular Diseases/prevention & control , Gastrointestinal Microbiome , Indoles/pharmacology , Oxidative Stress , Tryptophan/pharmacology , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Humans
2.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R969-R981, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34755563

ABSTRACT

Recent evidence suggests that gut bacteria-derived metabolites interact with the cardiovascular system and alter blood pressure (BP) in mammals. Here, we evaluated the effect of indole-3-propionic acid (IPA), a gut bacteria-derived metabolite of tryptophan, on the circulatory system. Arterial BP, electrocardiographic, and echocardiographic (ECHO) parameters were recorded in male, anesthetized, 12-wk-old Wistar-Kyoto rats at baseline and after intravenous administration of either IPA or vehicle. In additional experiments, rats were pretreated with prazosin or pentolinium to evaluate the involvement of the autonomic nervous system in cardiovascular responses to IPA. IPA's concentrations were measured using ultra-high performance liquid chromatography tandem mass spectrometry. The reactivity of endothelium-intact and -denuded mesenteric resistance arteries was tested. Cells' viability and lactate dehydrogenase (LDH) cytotoxicity assays were performed on cultured cardiomyocytes. IPA increased BP with a concomitant bradycardic response but no significant change in QTc interval. The pretreatment with prazosin and pentolinium reduced the hypertensive response. ECHO showed increased contractility of the heart after the administration of IPA. Ex vivo, IPA constricted predilated and endothelium-denuded mesenteric resistance arteries and increased metabolic activity of cardiomyocytes. IPA increases BP via cardiac and vascular mechanisms in rats. Furthermore, IPA increases cardiac contractility and metabolic activity of cardiomyocytes. Our study suggests that IPA may act as a mediator between gut microbiota and the circulatory system.


Subject(s)
Arterial Pressure/drug effects , Bacteria/metabolism , Energy Metabolism/drug effects , Gastrointestinal Microbiome , Hypertension/chemically induced , Indoles/toxicity , Mesenteric Arteries/drug effects , Myocytes, Cardiac/drug effects , Animals , Autonomic Nervous System/drug effects , Autonomic Nervous System/physiopathology , Bradycardia/chemically induced , Bradycardia/physiopathology , Cells, Cultured , Heart Rate/drug effects , Humans , Hypertension/physiopathology , Indoles/administration & dosage , Indoles/metabolism , Infusions, Intravenous , Male , Mesenteric Arteries/physiopathology , Myocardial Contraction/drug effects , Myocytes, Cardiac/metabolism , Rats, Inbred WKY
3.
J Hypertens ; 39(9): 1790-1799, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34397627

ABSTRACT

OBJECTIVES: Research suggests reciprocal crosstalk between the host and gut bacteria. This study evaluated the interaction between gut microbiota and arterial blood pressure (BP) in rats. METHODS: Continuous telemetry recordings of BP were started in 7-week-old normotensive Wistar--Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Two weeks later, half of the WKY and SHR were subjected to cross-transplantation of fecal matter, with stools harvested from either WKY or SHR and BP measurements until the age of 14 weeks. The composition of gut bacteria was assessed through analysis of the bacterial 16S ribosomal RNA gene sequence. The concentration of microbiota-derived metabolites was evaluated using HPLC-MS. RESULTS: There was a significant difference between WKY and SHR in the composition of gut bacteria at the start and end of the study. This was accompanied by significant histological differences in the colon. SHR, but not WKY, showed a gradual increase in BP throughout the experiment. For both WKY and SHR, there was no significant difference in BP or metabolic parameters between animals receiving fecal transplantation from either SHR or WKY. CONCLUSION: Genetically induced hypertension in SHR is associated with alterations in the composition of gut bacteria and histological morphology of the colon. An inter-strain fecal transplant does not affect BP and does not produce long-term changes in gut bacteria composition. We propose that the impact of the host genotype and/or phenotype on the gut bacteria may be greater than the impact of the gut bacteria on the host BP.


Subject(s)
Gastrointestinal Microbiome , Hypertension , Animals , Blood Pressure , Hypertension/genetics , Phenotype , Rats , Rats, Inbred SHR
4.
Bioorg Chem ; 98: 103717, 2020 05.
Article in English | MEDLINE | ID: mdl-32171994

ABSTRACT

A series of 2-aryl-2-(pyridin-2-yl)acetamides were synthesized and screened for their anticonvulsant activity in animal models of epilepsy. The compounds were broadly active in the 'classical' maximal electroshock seizure (MES) and subcutaneous Metrazol (scMET) tests as well as in the 6 Hz and kindling models of pharmacoresistant seizures. Furthermore, the compounds showed good therapeutic indices between anticonvulsant activity and motor impairment. Structure-activity relationship (SAR) trends clearly showed the highest activity resides in unsubstituted phenyl derivatives or compounds having ortho- and meta- substituents on the phenyl ring. The 2-aryl-2-(pyridin-2-yl)acetamides were derived by redesign of the cardiotoxic sodium channel blocker Disopyramide (DISO). Our results show that the compounds preserve the capability of the parent compound to inhibit voltage gated sodium currents in patch-clamp experiments; however, in contrast to DISO, a representative compound from the series 1 displays high levels of cardiac safety in a panel of in vitro and in vivo experiments.


Subject(s)
Acetamides/therapeutic use , Anticonvulsants/therapeutic use , Disopyramide/therapeutic use , Seizures/drug therapy , Acetamides/administration & dosage , Acetamides/chemistry , Animals , Anticonvulsants/administration & dosage , Anticonvulsants/chemistry , Disopyramide/administration & dosage , Disopyramide/chemistry , Dose-Response Relationship, Drug , Electroshock , Female , Injections, Intraperitoneal , Injections, Subcutaneous , Male , Mice , Molecular Structure , Pentylenetetrazole/administration & dosage , Rats , Rats, Wistar , Seizures/chemically induced , Structure-Activity Relationship
5.
Pflugers Arch ; 471(11-12): 1441-1453, 2019 12.
Article in English | MEDLINE | ID: mdl-31728701

ABSTRACT

Butyric acid (BA) is a short-chain fatty acid (SCFA) produced by gut bacteria in the colon. We hypothesized that colon-derived BA may affect hemodynamics. Arterial blood pressure (BP) and heart rate (HR) were recorded in anesthetized, male, 14-week-old Wistar rats. A vehicle, BA, or 3-hydroxybutyrate, an antagonist of SCFA receptors GPR41/43 (ANT) were administered intravenously (IV) or into the colon (IC). Reactivity of mesenteric (MA) and gracilis muscle (GMA) arteries was tested ex vivo. The concentration of BA in stools, urine, portal, and systemic blood was measured with liquid chromatography coupled with mass spectrometry. BA administered IV decreased BP with no significant effect on HR. The ANT reduced, whereas L-NAME, a nitric oxide synthase inhibitor, did not affect the hypotensive effect of BA. In comparison to BA administered intravenously, BA administered into the colon produced a significantly longer decrease in BP and a decrease in HR, which was associated with a 2-3-fold increase in BA colon content. Subphrenic vagotomy and IC pretreatment with the ANT significantly reduced the hypotensive effect. Ex vivo, BA dilated MA and GMA. In conclusion, an increase in the concentration of BA in the colon produces a significant hypotensive effect which depends on the afferent colonic vagus nerve signaling and GPR41/43 receptors. BA seems to be one of mediators between gut microbiota and the circulatory system.


Subject(s)
Arterial Pressure/drug effects , Butyric Acid/pharmacology , Colon/drug effects , Gastrointestinal Microbiome/physiology , Receptors, G-Protein-Coupled/metabolism , Vagus Nerve/drug effects , Animals , Arteries/drug effects , Arteries/metabolism , Colon/metabolism , Fatty Acids, Volatile/pharmacology , Heart Rate/drug effects , Hypotension/drug therapy , Hypotension/metabolism , Male , NG-Nitroarginine Methyl Ester/pharmacology , Rats , Rats, Wistar , Signal Transduction/drug effects , Vagus Nerve/metabolism
6.
Nutrients ; 11(3)2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30862081

ABSTRACT

Recent evidence suggests that tryptophan, an essential amino acid, may exert biological effects by means of tryptophan-derived gut bacteria products. We evaluated the potential contribution of tryptophan-derived bacterial metabolites to body weight gain. The study comprised three experimental series performed on separate groups of male, Sprague-Dawley rats: (i) rats on standard laboratory diet treated with water solution of neomycin, an antibiotic, or tap water (controls-1); (ii) rats on standard diet (controls-2) or tryptophan-high (TH) or tryptophan-free (TF) diet; and (iii) rats treated with indole-3-propionic acid (I3P), a bacterial metabolite of tryptophan, or a vehicle (controls-3). (i) Rats treated with neomycin showed a significantly higher weight gain but lower stool and blood concentration of I3P than controls-1. (ii) The TH group showed significantly smaller increases in body weight but higher stool and plasma concentration of I3P than controls-2. In contrast, the TF group showed a decrease in body weight, decreased total serum protein and a significant increase in urine output. (iii) Rats treated with I3P showed significantly smaller weight gain than controls-3. Our study suggests that I3P, a gut bacteria metabolite of tryptophan, contributes to changes in body weight gain produced by antibiotics and tryptophan-rich diet.


Subject(s)
Indoles/pharmacology , Neomycin/pharmacology , Propionates/pharmacology , Tryptophan/metabolism , Animals , Indoles/metabolism , Male , Propionates/metabolism , Protein Synthesis Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Weight Gain
7.
J Renin Angiotensin Aldosterone Syst ; 19(4): 1470320318808879, 2018.
Article in English | MEDLINE | ID: mdl-30370829

ABSTRACT

INTRODUCTION:: The dipeptide histidine-leucine (His-Leu) is formed in the process of converting angiotensin I into angiotensin II. Several studies show that short peptides containing His-Leu may produce significant haemodynamic effects; however, to the best of our knowledge, data on haemodynamic effects of His-Leu are not available in medical databases. MATERIALS AND METHODS:: We evaluated acute haemodynamic effects of intravenous administration of either 0.9% NaCl (vehicle) or His-Leu at a dose of 3-15 mg/kg body weight in anaesthetized 15-16-week-old, male, normotensive Wistar Kyoto and spontaneously hypertensive rats. Chronic effects of treatment with either the vehicle or His-Leu at a dose of 15 mg/kg body weight given subcutaneously daily were determined during continuous telemetry recordings in freely moving rats. RESULTS:: In anaesthetized rats both the vehicle and His-Leu produced a mild and transient increase in blood pressure and no change in plasma renin activity. There was no significant difference in haemodynamics between the rats infused with the vehicle and the rats infused with His-Leu. In chronic studies, seven-day treatment with vehicle and with His-Leu did not affect arterial blood pressure in freely moving rats. CONCLUSION:: His-Leu does not produce either acute or chronic changes in arterial blood pressure in normotensive and hypertensive rats.


Subject(s)
Angiotensin I/chemistry , Dipeptides/pharmacology , Hemodynamics/drug effects , Animals , Blood Pressure/drug effects , Dipeptides/administration & dosage , Heart Rate/drug effects , Male , Rats, Inbred WKY , Renin/blood
8.
Curr Drug Metab ; 19(10): 883-890, 2018.
Article in English | MEDLINE | ID: mdl-29708069

ABSTRACT

BACKGROUND: Increasing evidence proves the pivotal role of gut microbiota in mammals' homeostasis. Gut bacterial metabolites may exert local effects on the intestines, and may enter the circulation, affecting the functions of virtually all organs. Here, we review the available evidence on metabolism and biological effects of gut microbiota- derived indoles. METHODS: The PUBMED database and Google Scholar were searched to identify experimental and clinical studies investigating biological effects of gut bacteria-derived indoles. Key words included: gut microbiota, indoles, indole and tryptophan. RESULTS: Indoles represent a wide group of gut bacteria-derived compounds produced from tryptophan, an essential amino acid and the precursor of endogenous synthesis of tryptamine, serotonin and melatonin. Ample evidence suggests that indoles derived from gut microbiota metabolism exert significant biological effects and may contribute to the etiology of cardiovascular, metabolic, and psychiatric diseases. However, a majority of the research is limited to experimental studies and only a small number of clinical trials. CONCLUSION: Bacterial indoles affect the function of many biological systems. Whether gut-derived indoles contribute to pathogenesis of cardiovascular, metabolic and other diseases, requires further clinical studies.


Subject(s)
Gastrointestinal Microbiome , Indoles/metabolism , Tryptophan/metabolism , Animals , Humans
9.
Pharmacol Res ; 130: 172-179, 2018 04.
Article in English | MEDLINE | ID: mdl-29287686

ABSTRACT

Arterial blood pressure (BP) is regulated by a complex network of peripheral and central (brain) mechanisms. Research suggests that gut bacteria-derived compounds may affect the circulatory system. We evaluated hemodynamic effects of indole, a gut bacteria-derived product of tryptophan, and indoxyl sulfate (indoxyl), a liver metabolite of indole. BP and heart rate (HR) were recorded in anesthetized, male, Wistar rats at baseline and after the administration of either a vehicle, indole, or indoxyl into the femoral vein (IV) or into the lateral ventricle of the brain (ICV). Besides, we evaluated the effect of pretreatment with flupentixol, a non-selective D1, D2, α1 and 5 HT2A receptor blocker; pizotifen, a non-selective 5-HT1, 5-HT2A and 5HT2C receptor blocker; and ondansetron, a 5-HT3 blocker, on hemodynamic responses to indole and indoxyl. Vehicle infused IV and ICV did not affect hemodynamics. Indole administered IV produced a dose-dependent increase in BP but not HR. In contrast, the ICV infusion of indole produced a decrease in BP and HR. Indoxyl infused IV produced an increase in BP and HR, whereas indoxyl infused ICV did not affect BP and HR. The hemodynamic effects of indole and indoxyl were inhibited by pretreatment with ondansetron and pizotifen but not flupentixol. In conclusion, indole and indoxyl sulfate affect arterial blood pressure via peripheral and central mechanisms dependent on serotonin signalling. We propose that indole and indoxyl sulfate may be mediators in the interaction between gut bacteria and the circulatory system.


Subject(s)
Arterial Pressure/drug effects , Gastrointestinal Microbiome , Indican/pharmacology , Indoles/pharmacology , Animals , Infusions, Intravenous , Infusions, Intraventricular , Male , Rats, Wistar , Serotonin/metabolism , Tryptophan/metabolism
10.
Molecules ; 21(11)2016 Nov 17.
Article in English | MEDLINE | ID: mdl-27869680

ABSTRACT

Accumulating evidence suggests that gut bacteria play a role in homeostasis of the circulatory system in mammals. First, gut bacteria may affect the nervous control of the circulatory system via the sensory fibres of the enteric nervous system. Second, gut bacteria-derived metabolites may cross the gut-blood barrier and target blood vessels, the heart and other organs involved in the regulation of the circulatory system. A number of studies have shown that hydrogen sulfide (H2S) is an important biological mediator in the circulatory system. Thus far, research has focused on the effects of H2S enzymatically produced by cardiovascular tissues. However, some recent evidence indicates that H2S released in the colon may also contribute to the control of arterial blood pressure. Incidentally, sulfate-reducing bacteria are ubiquitous in mammalian colon, and H2S is just one among a number of molecules produced by the gut flora. Other gut bacteria-derived compounds that may affect the circulatory system include methane, nitric oxide, carbon monoxide, trimethylamine or indole. In this paper, we review studies that imply a role of gut microbiota and their metabolites, such as H2S, in circulatory system homeostasis.


Subject(s)
Cardiovascular Physiological Phenomena , Gastrointestinal Microbiome , Hydrogen Sulfide/metabolism , Animals , Cardiovascular Diseases/microbiology , Cardiovascular Diseases/physiopathology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/physiopathology , Homeostasis , Metabolic Diseases/microbiology
11.
Stress ; 19(6): 621-629, 2016 11.
Article in English | MEDLINE | ID: mdl-27696923

ABSTRACT

Noninvasive hemodynamic measurements in rats require placing animals in restrainers. To minimize restraint stress-induced artifacts several habituation protocols have been proposed, however, the results are inconclusive. Here, we evaluated if a four-week habituation is superior to a shorter habituation, or no habituation. This is the first study comparing different habituation protocols with the use of four-week continuous telemetry measurements. We did the experiments on male, 16-week old, Sprague-Dawley rats. Continuous recordings of mean arterial blood pressure (MABP) and heart rate (HR) were made before and during habituation protocols. Rats were subjected either to control (four weeks of restraint-free recordings, n = 5) or two-week (seven restraints, n = 6) or four-week (14 restraints, n = 6) restraint sessions. The restraint protocols included placement of rats in the middle of the dark phase into plastic restrainers as used for tail-cuff measurements. Restraint lasted for 60 min, and was repeated every second day. Each restraint significantly increased MABP (by 15-25 mmHg) and HR (by 40-120 beats/min). Exposure to the restraint protocols decreased diurnal variation in MABP. There was no hemodynamic adaptation to repeated restraint, and no significant difference in hemodynamic response to restraint among controls, the two-week and the four-week groups. In conclusion, our study indicates that measurements in restrained rats are not likely being made without stress-induced changes in MABP. Moreover, in hemodynamic studies in repeatedly restrained rats longer habituation is not superior to shorter habituation.


Subject(s)
Hemodynamics , Stress, Psychological/physiopathology , Acute Disease , Adaptation, Physiological , Animals , Blood Pressure , Chronic Disease , Circadian Rhythm , Habituation, Psychophysiologic , Heart Rate , Male , Rats , Rats, Sprague-Dawley , Restraint, Physical
SELECTION OF CITATIONS
SEARCH DETAIL
...