Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Redox Biol ; 77: 103378, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39368457

ABSTRACT

Alternative oxidase (AOX) is an enzyme that transfers electrons from reduced quinone directly to oxygen without proton translocation. When AOX from Ciona intestinalis is xenotopically expressed in mice, it can substitute the combined electron-transferring activity of mitochondrial complexes III/IV. Here, we used brain mitochondria from AOX-expressing mice with such a chimeric respiratory chain to study respiratory control bioenergetic mechanisms. AOX expression did not compromise the function of the mammalian respiratory chain at physiological conditions, however the complex IV inhibitor cyanide only partially blocked respiration by AOX-containing mitochondria. The relative fraction of cyanide-insensitive respiration increased at lower temperatures, indicative of a temperature-controlled attenuation of mammalian respiratory enzyme activity. As AOX does not translocate protons, the mitochondrial transmembrane potential in AOX-containing mitochondria was more sensitive to cyanide during succinate oxidation than during malate/pyruvate-supported respiration. High concentrations of cyanide fully collapsed membrane potential during oxidation of either succinate or glycerol 3-phosphate, but not during malate/pyruvate-supported respiration. This confirms AOX's electroneutral redox activity and indicates differences in the proton-translocating capacity of dehydrogenases upstream of the ubiquinone pool. Our respiration data refutes previous proposals for quinone partitioning within the supercomplexes of the respiratory chain, instead supporting the concept of a single homogeneous, freely diffusing quinone pool. Respiration with either succinate or glycerol 3-phosphate promotes reverse electron transfer (RET) towards complex I. AOX expression significantly decreased RET-induced ROS generation, with the effect more pronounced at low temperatures. Inhibitor-sensitivity analysis showed that the AOX-induced decrease in H2O2 release is due to the lower contribution of complex I to net ROS production during RET. Overall, our findings provide new insights into the role of temperature as a mechanism to control respiration and highlight the utility of AOX as a genetic tool to characterize both the distinct pathways of oxygen reduction and the role of redox control in RET.

2.
Biochim Biophys Acta Bioenerg ; 1865(4): 149494, 2024 11 01.
Article in English | MEDLINE | ID: mdl-38960079

ABSTRACT

Mitochondrial bioenergetics in females and males is different. However, whether mitochondria from male and female brains display differences in enzymes of oxidative phosphorylation remains unknown. Therefore, we characterized mitochondrial complexes from the brains of male and female macaques (Macaca mulatta). Cerebral tissue from male macaques exhibits elevated content and activity of mitochondrial complex I (NADH:ubiquinone oxidoreductase) and higher activity of complex II (succinate dehydrogenase) compared to females. No significant differences between sexes were found in the content of α-ketoglutarate dehydrogenase or in the activities of cytochrome c oxidase and F1Fo ATPase. Our results underscore the need for further investigations to elucidate sex-related mitochondrial differences in humans.


Subject(s)
Brain , Mitochondria , Animals , Male , Female , Mitochondria/metabolism , Brain/metabolism , Macaca mulatta , Electron Transport Complex IV/metabolism , Sex Characteristics , Oxidative Phosphorylation , Ketoglutarate Dehydrogenase Complex/metabolism , Electron Transport Complex I/metabolism , Energy Metabolism
3.
Neurobiol Aging ; 130: 80-83, 2023 10.
Article in English | MEDLINE | ID: mdl-37473581

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating neuromuscular disease with limited therapeutic options. Biomarkers are needed for early disease detection, clinical trial design, and personalized medicine. Early evidence suggests that specific morphometric features in ALS primary skin fibroblasts may be used as biomarkers; however, this hypothesis has not been rigorously tested in conclusively large fibroblast populations. Here, we imaged ALS-relevant organelles (mitochondria, endoplasmic reticulum, lysosomes) and proteins (TAR DNA-binding protein 43, Ras GTPase-activating protein-binding protein 1, heat-shock protein 60) at baseline and under stress perturbations and tested their predictive power on a total set of 443 human fibroblast lines from ALS and healthy individuals. Machine learning approaches were able to confidently predict stress perturbation states (ROC-AUC ∼0.99) but not disease groups or clinical features (ROC-AUC 0.58-0.64). Our findings indicate that multivariate models using patient-derived fibroblast morphometry can accurately predict different stressors but are insufficient to develop viable ALS biomarkers.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/metabolism , Biomarkers , Endoplasmic Reticulum/metabolism , Machine Learning , Fibroblasts/metabolism
4.
EMBO Rep ; 24(1): e54689, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36408842

ABSTRACT

Disruption of sphingolipid homeostasis and signaling has been implicated in diabetes, cancer, cardiometabolic, and neurodegenerative disorders. Yet, mechanisms governing cellular sensing and regulation of sphingolipid homeostasis remain largely unknown. In yeast, serine palmitoyltransferase, catalyzing the first and rate-limiting step of sphingolipid de novo biosynthesis, is negatively regulated by Orm1 and 2. Lowering sphingolipids triggers Orms phosphorylation, upregulation of serine palmitoyltransferase activity and sphingolipid de novo biosynthesis. However, mammalian orthologs ORMDLs lack the N-terminus hosting the phosphosites. Thus, which sphingolipid(s) are sensed by the cells, and mechanisms of homeostasis remain largely unknown. Here, we identify sphingosine-1-phosphate (S1P) as key sphingolipid sensed by cells via S1PRs to maintain homeostasis. The increase in S1P-S1PR signaling stabilizes ORMDLs, restraining SPT activity. Mechanistically, the hydroxylation of ORMDLs at Pro137 allows a constitutive degradation of ORMDLs via ubiquitin-proteasome pathway, preserving SPT activity. Disrupting S1PR/ORMDL axis results in ceramide accrual, mitochondrial dysfunction, impaired signal transduction, all underlying endothelial dysfunction, early event in the onset of cardio- and cerebrovascular diseases. Our discovery may provide the molecular basis for therapeutic intervention restoring sphingolipid homeostasis.


Subject(s)
Saccharomyces cerevisiae Proteins , Sphingolipids , Animals , Humans , Sphingolipids/metabolism , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Membrane Proteins/metabolism , Homeostasis , Saccharomyces cerevisiae/metabolism , Mammals/metabolism
5.
Hum Mol Genet ; 31(20): 3458-3477, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35652455

ABSTRACT

Metabolic alterations shared between the nervous system and skin fibroblasts have emerged in amyotrophic lateral sclerosis (ALS). Recently, we found that a subgroup of sporadic ALS (sALS) fibroblasts (sALS1) is characterized by metabolic profiles distinct from other sALS cases (sALS2) and controls, suggesting that metabolic therapies could be effective in sALS. The metabolic modulators nicotinamide riboside and pterostilbene (EH301) are under clinical development for the treatment of ALS. Here, we studied the transcriptome and metabolome of sALS cells to understand the molecular bases of sALS metabotypes and the impact of EH301. Metabolomics and transcriptomics were investigated at baseline and after EH301 treatment. Moreover, weighted gene coexpression network analysis (WGCNA) was used to investigate the association of the metabolic and clinical features. We found that the sALS1 transcriptome is distinct from sALS2 and that EH301 modifies gene expression differently in sALS1, sALS2 and the controls. Furthermore, EH301 had strong protective effects against metabolic stress, an effect linked to the antiinflammatory and antioxidant pathways. WGCNA revealed that the ALS functional rating scale and metabotypes are associated with gene modules enriched for the cell cycle, immunity, autophagy and metabolic genes, which are modified by EH301. The meta-analysis of publicly available transcriptomic data from induced motor neurons by Answer ALS confirmed the functional associations of genes correlated with disease traits. A subset of genes differentially expressed in sALS fibroblasts was used in a machine learning model to predict disease progression. In conclusion, multiomic analyses highlighted the differential metabolic and transcriptomic profiles in patient-derived fibroblast sALS, which translate into differential responses to the investigational drug EH301.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/metabolism , Antioxidants/metabolism , Drugs, Investigational/metabolism , Drugs, Investigational/therapeutic use , Fibroblasts/metabolism , Humans , Transcriptome/genetics
6.
Cell ; 185(4): 712-728.e14, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35063084

ABSTRACT

Tau (MAPT) drives neuronal dysfunction in Alzheimer disease (AD) and other tauopathies. To dissect the underlying mechanisms, we combined an engineered ascorbic acid peroxidase (APEX) approach with quantitative affinity purification mass spectrometry (AP-MS) followed by proximity ligation assay (PLA) to characterize Tau interactomes modified by neuronal activity and mutations that cause frontotemporal dementia (FTD) in human induced pluripotent stem cell (iPSC)-derived neurons. We established interactions of Tau with presynaptic vesicle proteins during activity-dependent Tau secretion and mapped the Tau-binding sites to the cytosolic domains of integral synaptic vesicle proteins. We showed that FTD mutations impair bioenergetics and markedly diminished Tau's interaction with mitochondria proteins, which were downregulated in AD brains of multiple cohorts and correlated with disease severity. These multimodal and dynamic Tau interactomes with exquisite spatial resolution shed light on Tau's role in neuronal function and disease and highlight potential therapeutic targets to block Tau-mediated pathogenesis.


Subject(s)
Mitochondria/metabolism , Nerve Degeneration/metabolism , Protein Interaction Maps , Synapses/metabolism , tau Proteins/metabolism , Alzheimer Disease/genetics , Amino Acids/metabolism , Biotinylation , Brain/metabolism , Brain/pathology , Cell Nucleus/metabolism , Disease Progression , Energy Metabolism , Frontotemporal Dementia/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Mutant Proteins/metabolism , Mutation/genetics , Nerve Degeneration/pathology , Neurons/metabolism , Protein Binding , Protein Domains , Proteomics , Severity of Illness Index , Subcellular Fractions/metabolism , Tauopathies/genetics , tau Proteins/chemistry
7.
Autophagy ; 17(12): 4029-4042, 2021 12.
Article in English | MEDLINE | ID: mdl-33749521

ABSTRACT

ALS (amyotrophic lateral sclerosis), the most common motor neuron disease, causes muscle denervation and rapidly fatal paralysis. While motor neurons are the most affected cells in ALS, studies on the pathophysiology of the disease have highlighted the importance of non-cell autonomous mechanisms, which implicate astrocytes and other glial cells. In ALS, subsets of reactive astrocytes lose their physiological functions and become toxic for motor neurons, thereby contributing to disease pathogenesis. Evidence of astrocyte contribution to disease pathogenesis are well established in cellular and animal models of familial ALS linked to mutant SOD1, where astrocytes promote motor neuron cell death. The mechanism underlying astrocytes reactivity in conditions of CNS injury have been shown to involve the MTOR pathway. However, the role of this conserved metabolic signaling pathway, and the potential therapeutic effects of its modulation, have not been investigated in ALS astrocytes. Here, we show elevated activation of the MTOR pathway in human-derived astrocytes harboring mutant SOD1, which results in inhibition of macroautophagy/autophagy, increased cell proliferation, and enhanced astrocyte reactivity. We demonstrate that MTOR pathway activation in mutant SOD1 astrocytes is due to post-transcriptional upregulation of the IGF1R (insulin like growth factor 1 receptor), an upstream positive modulator of the MTOR pathway. Importantly, inhibition of the IGF1R-MTOR pathway decreases cell proliferation and reactivity of mutant SOD1 astrocytes, and attenuates their toxicity to motor neurons. These results suggest that modulation of astrocytic IGF1R-MTOR pathway could be a viable therapeutic strategy in SOD1 ALS and potentially other neurological diseases.Abbreviations: ACM: astrocyte conditioned medium; AKT: AKT serine/threonine kinase; ALS: amyotrophic lateral sclerosis; BrdU: thymidine analog 5-bromo-2'-deoxyuridine; CNS: central nervous system; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; GFAP: glial fibrillary acidic protein; IGF1R: insulin like growth factor 1 receptor; INSR: insulin receptor; iPSA: iPSC-derived astrocytes; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta;MTOR: mechanistic target of rapamycin kinase; NES: nestin; PPK1: 3-phosphoinositide dependent protein kinase 1; PI: propidium iodide; PPP: picropodophyllotoxin; PTEN: phosphatase and tensin homolog; S100B/S100ß: S100 calcium binding protein B; SLC1A3/ EAAT1: solute carrier family 1 member 3; SMI-32: antibody to nonphosphorylated NEFH; SOD1: superoxide dismutase 1; TUBB3: tubulin beta 3 class III; ULK1: unc-51 like autophagy activating kinase 1.


Subject(s)
Amyotrophic Lateral Sclerosis , Astrocytes , Amyotrophic Lateral Sclerosis/metabolism , Animals , Astrocytes/metabolism , Autophagy , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Motor Neurons/metabolism , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/pharmacology , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , TOR Serine-Threonine Kinases/metabolism
8.
Neurobiol Dis ; 144: 105025, 2020 10.
Article in English | MEDLINE | ID: mdl-32745521

ABSTRACT

Amyotrophic lateral sclerosis is a disease characterized by progressive paralysis and death. Most ALS-cases are sporadic (sALS) and patient heterogeneity poses challenges for effective therapies. Applying metabolite profiling on 77-sALS patient-derived-fibroblasts and 43-controls, we found ~25% of sALS cases (termed sALS-1) are characterized by transsulfuration pathway upregulation, where methionine-derived-homocysteine is channeled into cysteine for glutathione synthesis. sALS-1 fibroblasts selectively exhibited a growth defect under oxidative conditions, fully-rescued by N-acetylcysteine (NAC). [U13C]-glucose tracing showed transsulfuration pathway activation with accelerated glucose flux into the Krebs cycle. We established a four-metabolite support vector machine model predicting sALS-1 metabotype with 97.5% accuracy. Both sALS-1 metabotype and growth phenotype were validated in an independent cohort of sALS cases. Importantly, plasma metabolite profiling identified a system-wide cysteine metabolism perturbation as a hallmark of sALS-1. Findings reveal that sALS patients can be stratified into distinct metabotypes with differential sensitivity to metabolic stress, providing novel insights for personalized therapy.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Cysteine/metabolism , Fibroblasts/metabolism , Glucose/metabolism , Glutathione/metabolism , Metabolome , Aged , Case-Control Studies , Cells, Cultured , Female , Humans , Male , Metabolic Networks and Pathways , Metabolomics , Middle Aged , Serine/metabolism , Skin/cytology
9.
J Neurosci ; 40(16): 3142-3151, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32152200

ABSTRACT

Prohibitin (PHB) is a critical protein involved in many cellular activities. In brain, PHB resides in mitochondria, where it forms a large protein complex with PHB2 in the inner TFmembrane, which serves as a scaffolding platform for proteins involved in mitochondrial structural and functional integrity. PHB overexpression at moderate levels provides neuroprotection in experimental brain injury models. In addition, PHB expression is involved in ischemic preconditioning, as its expression is enhanced in preconditioning paradigms. However, the mechanisms of PHB functional regulation are still unknown. Observations that nitric oxide (NO) plays a key role in ischemia preconditioning compelled us to postulate that the neuroprotective effect of PHB could be regulated by NO. Here, we test this hypothesis in a neuronal model of ischemia-reperfusion injury and show that NO and PHB are mutually required for neuronal resilience against oxygen and glucose deprivation stress. Further, we demonstrate that NO post-translationally modifies PHB through protein S-nitrosylation and regulates PHB neuroprotective function, in a nitric oxide synthase-dependent manner. These results uncover the mechanisms of a previously unrecognized form of molecular regulation of PHB that underlies its neuroprotective function.SIGNIFICANCE STATEMENT Prohibitin (PHB) is a critical mitochondrial protein that exerts a potent neuroprotective effect when mildly upregulated in mice. However, how the neuroprotective function of PHB is regulated is still unknown. Here, we demonstrate a novel regulatory mechanism for PHB that involves nitric oxide (NO) and shows that PHB and NO interact directly, resulting in protein S-nitrosylation on residue Cys69 of PHB. We further show that nitrosylation of PHB may be essential for its ability to preserve neuronal viability under hypoxic stress. Thus, our study reveals a previously unknown mechanism of functional regulation of PHB that has potential therapeutic implications for neurologic disorders.


Subject(s)
Neurons/metabolism , Neuroprotection/physiology , Nitric Oxide/metabolism , Reperfusion Injury/metabolism , Repressor Proteins/metabolism , Animals , Cell Death/physiology , Cells, Cultured , Cyclic GMP/metabolism , Enzyme Inhibitors/pharmacology , Mice , NG-Nitroarginine Methyl Ester/pharmacology , Neurons/drug effects , Neuroprotection/drug effects , Nitric Oxide Synthase/antagonists & inhibitors , Prohibitins , Signal Transduction/drug effects , Signal Transduction/physiology
10.
Article in English | MEDLINE | ID: mdl-33602014

ABSTRACT

Primary lateral sclerosis (PLS) is a rare neurodegenerative disease characterized by progressive degeneration of upper motor neurons (UMNs). Recent studies shed new light onto the cellular events that are particularly important for UMN maintenance including intracellular trafficking, mitochondrial energy homeostasis and lipid metabolism. This review summarizes these advances including the role of Alsin as a gene linked to atypical forms of juvenile PLS, and discusses wider aspects of cellular pathology that have been observed in adult forms of PLS. The review further discusses the prospects of new transgenic upper motor neuron reporter mice, human stem cell-derived UMN cultures, cerebral organoids and non-human primates as future model systems to better understand and ultimately treat PLS.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Neuron Disease , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/genetics , Animals , Guanine Nucleotide Exchange Factors , Mice , Motor Neuron Disease/genetics , Motor Neurons
11.
Life Sci Alliance ; 2(5)2019 10.
Article in English | MEDLINE | ID: mdl-31658977

ABSTRACT

We report a signaling pathway linking two fundamental functions of the ER, oxidative protein folding, and intracellular calcium regulation. Cells sense ER oxidative protein folding through H2O2, which induces Nrf2 nuclear translocation. Nrf2 regulates the expression of GPx8, an ER glutathione peroxidase that modulates ER calcium levels. Because ER protein folding is dependent on calcium, this pathway functions as rheostat of ER calcium levels. Protein misfolding and calcium dysregulation contribute to the pathophysiology of many diseases, including amyotrophic lateral sclerosis, in which astrocytic calcium dysregulation participates in causing motor neuron death. In human-derived astrocytes harboring mutant SOD1 causative of familial amyotrophic lateral sclerosis, we show that impaired ER redox signaling decreases Nrf2 nuclear translocation, resulting in ER calcium overload and increased calcium-dependent cell secretion, leading to motor neuron death. Nrf2 activation in SOD1 mutant astrocytes with dimethyl fumarate restores calcium homeostasis and ameliorates motor neuron death. These results highlight a regulatory mechanism of intracellular calcium homeostasis by ER redox signaling and suggest that this mechanism could be a therapeutic target in SOD1 mutant astrocytes.


Subject(s)
Calcium/metabolism , Endoplasmic Reticulum/metabolism , Hydrogen Peroxide/pharmacology , Motor Neurons/cytology , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Animals , COS Cells , Cells, Cultured , Chlorocebus aethiops , Endoplasmic Reticulum Stress , HeLa Cells , Homeostasis , Humans , Mice , Motor Neurons/drug effects , Motor Neurons/metabolism , Peroxidases/metabolism
12.
Cell Stem Cell ; 25(1): 120-136.e10, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31155483

ABSTRACT

Current challenges in capturing naive human pluripotent stem cells (hPSCs) suggest that the factors regulating human naive versus primed pluripotency remain incompletely defined. Here we demonstrate that the widely used Essential 8 minimal medium (E8) captures hPSCs at a naive-to-primed intermediate state of pluripotency expressing several naive-like developmental, bioenergetic, and epigenomic features despite providing primed-state-sustaining growth factor conditions. Transcriptionally, E8 hPSCs are marked by activated lipid biosynthesis and suppressed MAPK/TGF-ß gene expression, resulting in endogenous ERK inhibition. These features are dependent on lipid-free culture conditions and are lost upon lipid exposure, whereas short-term pharmacological ERK inhibition restores naive-to-primed intermediate traits even in the presence of lipids. Finally, we identify de novo lipogenesis as a common transcriptional signature of E8 hPSCs and the pre-implantation human epiblast in vivo. These findings implicate exogenous lipid availability in regulating human pluripotency and define E8 hPSCs as a stable, naive-to-primed intermediate (NPI) pluripotent state.


Subject(s)
Blastocyst/cytology , Germ Layers/cytology , Pluripotent Stem Cells/physiology , Cell Differentiation , Cells, Cultured , Culture Media, Serum-Free , Embryonic Stem Cells , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Lipid Metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
13.
Antioxid Redox Signal ; 31(9): 608-622, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31037949

ABSTRACT

Aims: Brain ischemia/reperfusion (I/R) is associated with impairment of mitochondrial function. However, the mechanisms of mitochondrial failure are not fully understood. This work was undertaken to determine the mechanisms and time course of mitochondrial energy dysfunction after reperfusion following neonatal brain hypoxia-ischemia (HI) in mice. Results: HI/reperfusion decreased the activity of mitochondrial complex I, which was recovered after 30 min of reperfusion and then declined again after 1 h. Decreased complex I activity occurred in parallel with a loss in the content of noncovalently bound membrane flavin mononucleotide (FMN). FMN dissociation from the enzyme is caused by succinate-supported reverse electron transfer. Administration of FMN precursor riboflavin before HI/reperfusion was associated with decreased infarct volume, attenuation of neurological deficit, and preserved complex I activity compared with vehicle-treated mice. In vitro, the rate of FMN release during oxidation of succinate was not affected by the oxygen level and amount of endogenously produced reactive oxygen species. Innovation: Our data suggest that dissociation of FMN from mitochondrial complex I may represent a novel mechanism of enzyme inhibition defining respiratory chain failure in I/R. Strategies preventing FMN release during HI and reperfusion may limit the extent of energy failure and cerebral HI injury. The proposed mechanism of acute I/R-induced complex I impairment is distinct from the generally accepted mechanism of oxidative stress-mediated I/R injury. Conclusion: Our study is the first to highlight a critical role of mitochondrial complex I-FMN dissociation in the development of HI-reperfusion injury of the neonatal brain. Antioxid. Redox Signal. 31, 608-622.


Subject(s)
Electron Transport Complex I/metabolism , Flavins/metabolism , Hypoxia-Ischemia, Brain/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Reperfusion Injury/metabolism , Animals , Animals, Newborn , Electron Transport Complex I/chemistry , Flavin Mononucleotide/metabolism , Flavins/chemistry , Hydrogen Peroxide/metabolism , Hypoxia-Ischemia, Brain/etiology , Mice , Oxidative Stress , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Reperfusion Injury/etiology , Structure-Activity Relationship
14.
J Cereb Blood Flow Metab ; 39(9): 1790-1802, 2019 09.
Article in English | MEDLINE | ID: mdl-29629602

ABSTRACT

Mortality from perinatal hypoxic-ischemic (HI) brain injury reached 1.15 million worldwide in 2010 and is also a major factor for neurological disability in infants. HI directly influences the oxidative phosphorylation enzyme complexes in mitochondria, but the exact mechanism of HI-reoxygenation response in brain remains largely unresolved. After induction of HI-reoxygenation in postnatal day 10 rats, activities of mitochondrial respiratory chain enzymes were analysed and complexome profiling was performed. The effect of conformational state (active/deactive (A/D) transition) of mitochondrial complex I on H2O2 release was measured simultaneously with mitochondrial oxygen consumption. In contrast to cytochrome c oxidase and succinate dehydrogenase, HI-reoxygenation resulted in inhibition of mitochondrial complex I at 4 h after reoxygenation. Immediately after HI, we observed a robust increase in the content of deactive (D) form of complex I. The D-form is less active in reactive oxygen species (ROS) production via reversed electron transfer, indicating the key role of the deactivation of complex I in ischemia/reoxygenation. We describe a novel mechanism of mitochondrial response to ischemia in the immature brain. HI induced a deactivation of complex I in order to reduce ROS production following reoxygenation. Delayed activation of complex I represents a novel mitochondrial target for pathological-activated therapy.


Subject(s)
Electron Transport Complex I/metabolism , Hypoxia-Ischemia, Brain/metabolism , Mitochondria/metabolism , Animals , Animals, Newborn , Brain/metabolism , Brain/pathology , Cells, Cultured , Electron Transport , Female , Humans , Hydrogen Peroxide/metabolism , Hypoxia-Ischemia, Brain/pathology , Male , Mitochondria/pathology , Rats, Wistar , Reactive Oxygen Species/metabolism
15.
J Neurochem ; 148(6): 731-745, 2019 03.
Article in English | MEDLINE | ID: mdl-30582748

ABSTRACT

Reactive oxygen species (ROS) are by-products of physiological mitochondrial metabolism that are involved in several cellular signaling pathways as well as tissue injury and pathophysiological processes, including brain ischemia/reperfusion injury. The mitochondrial respiratory chain is considered a major source of ROS; however, there is little agreement on how ROS release depends on oxygen concentration. The rate of H2 O2 release by intact brain mitochondria was measured with an Amplex UltraRed assay using a high-resolution respirometer (Oroboros) equipped with a fluorescent optical module and a system of controlled gas flow for varying the oxygen concentration. Three types of substrates were used: malate and pyruvate, succinate and glutamate, succinate alone or glycerol 3-phosphate. For the first time we determined that, with any substrate used in the absence of inhibitors, H2 O2 release by respiring brain mitochondria is linearly dependent on the oxygen concentration. We found that the highest rate of H2 O2 release occurs in conditions of reverse electron transfer when mitochondria oxidize succinate or glycerol 3-phosphate. H2 O2 production by complex III is significant only in the presence of antimycin A and, in this case, the oxygen dependence manifested mixed (linear and hyperbolic) kinetics. We also demonstrated that complex II in brain mitochondria could contribute to ROS generation even in the absence of its substrate succinate when the quinone pool is reduced by glycerol 3-phosphate. Our results underscore the critical importance of reverse electron transfer in the brain, where a significant amount of succinate can be accumulated during ischemia providing a backflow of electrons to complex I at the early stages of reperfusion. Our study also demonstrates that ROS generation in brain mitochondria is lower under hypoxic conditions than in normoxia. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Subject(s)
Brain/metabolism , Mitochondria/metabolism , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Animals , Antimycin A/pharmacology , Brain/drug effects , Cell Hypoxia/drug effects , Cell Hypoxia/physiology , Cell Respiration/drug effects , Cell Respiration/physiology , Electron-Transferring Flavoproteins/drug effects , Electron-Transferring Flavoproteins/metabolism , Energy Metabolism/drug effects , Energy Metabolism/physiology , Mice , Mitochondria/drug effects , Oxygen Consumption/physiology
16.
Nature ; 562(7727): 423-428, 2018 10.
Article in English | MEDLINE | ID: mdl-30305738

ABSTRACT

Tumours evade immune control by creating hostile microenvironments that perturb T cell metabolism and effector function1-4. However, it remains unclear how intra-tumoral T cells integrate and interpret metabolic stress signals. Here we report that ovarian cancer-an aggressive malignancy that is refractory to standard treatments and current immunotherapies5-8-induces endoplasmic reticulum stress and activates the IRE1α-XBP1 arm of the unfolded protein response9,10 in T cells to control their mitochondrial respiration and anti-tumour function. In T cells isolated from specimens collected from patients with ovarian cancer, upregulation of XBP1 was associated with decreased infiltration of T cells into tumours and with reduced IFNG mRNA expression. Malignant ascites fluid obtained from patients with ovarian cancer inhibited glucose uptake and caused N-linked protein glycosylation defects in T cells, which triggered IRE1α-XBP1 activation that suppressed mitochondrial activity and IFNγ production. Mechanistically, induction of XBP1 regulated the abundance of glutamine carriers and thus limited the influx of glutamine that is necessary to sustain mitochondrial respiration in T cells under glucose-deprived conditions. Restoring N-linked protein glycosylation, abrogating IRE1α-XBP1 activation or enforcing expression of glutamine transporters enhanced mitochondrial respiration in human T cells exposed to ovarian cancer ascites. XBP1-deficient T cells in the metastatic ovarian cancer milieu exhibited global transcriptional reprogramming and improved effector capacity. Accordingly, mice that bear ovarian cancer and lack XBP1 selectively in T cells demonstrate superior anti-tumour immunity, delayed malignant progression and increased overall survival. Controlling endoplasmic reticulum stress or targeting IRE1α-XBP1 signalling may help to restore the metabolic fitness and anti-tumour capacity of T cells in cancer hosts.


Subject(s)
Endoribonucleases/metabolism , Mitochondria/metabolism , Ovarian Neoplasms/immunology , Protein Serine-Threonine Kinases/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , X-Box Binding Protein 1/metabolism , Amino Acid Transport Systems, Basic , Animals , Ascites/metabolism , Cell Respiration , Disease Progression , Endoplasmic Reticulum Stress , Female , Gene Expression Regulation, Neoplastic , Glucose/metabolism , Glutamine/metabolism , Glycosylation , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Mice , Neoplasm Metastasis , Neoplasm Transplantation , Ovarian Neoplasms/pathology , Signal Transduction , Survival Rate , T-Lymphocytes/metabolism , Tumor Escape/immunology , Unfolded Protein Response , X-Box Binding Protein 1/biosynthesis , X-Box Binding Protein 1/deficiency
17.
EMBO Mol Med ; 10(10)2018 10.
Article in English | MEDLINE | ID: mdl-30126943

ABSTRACT

Mutant Cu/Zn superoxide dismutase (SOD1) causes mitochondrial alterations that contribute to motor neuron demise in amyotrophic lateral sclerosis (ALS). When mitochondria are damaged, cells activate mitochondria quality control (MQC) mechanisms leading to mitophagy. Here, we show that in the spinal cord of G93A mutant SOD1 transgenic mice (SOD1-G93A mice), the autophagy receptor p62 is recruited to mitochondria and mitophagy is activated. Furthermore, the mitochondrial ubiquitin ligase Parkin and mitochondrial dynamics proteins, such as Miro1, and Mfn2, which are ubiquitinated by Parkin, and the mitochondrial biogenesis regulator PGC1α are depleted. Unexpectedly, Parkin genetic ablation delays disease progression and prolongs survival in SOD1-G93A mice, as it slows down motor neuron loss and muscle denervation and attenuates the depletion of mitochondrial dynamics proteins and PGC1α. Our results indicate that Parkin is a disease modifier in ALS, because chronic Parkin-mediated MQC activation depletes mitochondrial dynamics-related proteins, inhibits mitochondrial biogenesis, and worsens mitochondrial dysfunction.


Subject(s)
Amyotrophic Lateral Sclerosis/physiopathology , Superoxide Dismutase-1/genetics , Ubiquitin-Protein Ligases/metabolism , Animals , Disease Models, Animal , Gene Knockdown Techniques , Mice, Inbred C57BL , Mice, Transgenic , Ubiquitin-Protein Ligases/genetics
18.
Stroke ; 49(5): 1223-1231, 2018 05.
Article in English | MEDLINE | ID: mdl-29643256

ABSTRACT

BACKGROUND AND PURPOSE: Ischemic brain injury is characterized by 2 temporally distinct but interrelated phases: ischemia (primary energy failure) and reperfusion (secondary energy failure). Loss of cerebral blood flow leads to decreased oxygen levels and energy crisis in the ischemic area, initiating a sequence of pathophysiological events that after reoxygenation lead to ischemia/reperfusion (I/R) brain damage. Mitochondrial impairment and oxidative stress are known to be early events in I/R injury. However, the biochemical mechanisms of mitochondria damage in I/R are not completely understood. METHODS: We used a mouse model of transient focal cerebral ischemia to investigate acute I/R-induced changes of mitochondrial function, focusing on mechanisms of primary and secondary energy failure. RESULTS: Ischemia induced a reversible loss of flavin mononucleotide from mitochondrial complex I leading to a transient decrease in its enzymatic activity, which is rapidly reversed on reoxygenation. Reestablishing blood flow led to a reversible oxidative modification of mitochondrial complex I thiol residues and inhibition of the enzyme. Administration of glutathione-ethyl ester at the onset of reperfusion prevented the decline of complex I activity and was associated with smaller infarct size and improved neurological outcome, suggesting that decreased oxidation of complex I thiols during I/R-induced oxidative stress may contribute to the neuroprotective effect of glutathione ester. CONCLUSIONS: Our results unveil a key role of mitochondrial complex I in the development of I/R brain injury and provide the mechanistic basis for the well-established mitochondrial dysfunction caused by I/R. Targeting the functional integrity of complex I in the early phase of reperfusion may provide a novel therapeutic strategy to prevent tissue injury after stroke.


Subject(s)
Brain/metabolism , Electron Transport Complex I/metabolism , Flavin Mononucleotide/metabolism , Glutathione/metabolism , Infarction, Middle Cerebral Artery/metabolism , Mitochondria/metabolism , Reperfusion Injury/metabolism , Animals , Brain/drug effects , Brain Ischemia/metabolism , Cerebrovascular Circulation , Citrate (si)-Synthase/drug effects , Citrate (si)-Synthase/metabolism , Disease Models, Animal , Electron Transport Complex I/drug effects , Energy Metabolism , Glutathione/analogs & derivatives , Glutathione/pharmacology , Male , Mice , Mitochondria/drug effects , Oxidative Stress/drug effects , Random Allocation , Sulfhydryl Compounds/metabolism
19.
Mol Neurodegener ; 12(1): 76, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29065921

ABSTRACT

BACKGROUND: The objective of this study was to investigate cellular bioenergetics in primary skin fibroblasts derived from patients with amyotrophic lateral sclerosis (ALS) and to determine if they can be used as classifiers for patient stratification. METHODS: We assembled a collection of unprecedented size of fibroblasts from patients with sporadic ALS (sALS, n = 171), primary lateral sclerosis (PLS, n = 34), ALS/PLS with C9orf72 mutations (n = 13), and healthy controls (n = 91). In search for novel ALS classifiers, we performed extensive studies of fibroblast bioenergetics, including mitochondrial membrane potential, respiration, glycolysis, and ATP content. Next, we developed a machine learning approach to determine whether fibroblast bioenergetic features could be used to stratify patients. RESULTS: Compared to controls, sALS and PLS fibroblasts had higher average mitochondrial membrane potential, respiration, and glycolysis, suggesting that they were in a hypermetabolic state. Only membrane potential was elevated in C9Orf72 lines. ATP steady state levels did not correlate with respiration and glycolysis in sALS and PLS lines. Based on bioenergetic profiles, a support vector machine (SVM) was trained to classify sALS and PLS with 99% specificity and 70% sensitivity. CONCLUSIONS: sALS, PLS, and C9Orf72 fibroblasts share hypermetabolic features, while presenting differences of bioenergetics. The absence of correlation between energy metabolism activation and ATP levels in sALS and PLS fibroblasts suggests that in these cells hypermetabolism is a mechanism to adapt to energy dissipation. Results from SVM support the use of metabolic characteristics of ALS fibroblasts and multivariate analysis to develop classifiers for patient stratification.


Subject(s)
Amyotrophic Lateral Sclerosis/classification , Amyotrophic Lateral Sclerosis/metabolism , Fibroblasts/metabolism , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/pathology , Energy Metabolism , Female , Humans , Machine Learning , Male , Middle Aged , Skin
20.
J Cereb Blood Flow Metab ; 37(12): 3649-3658, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28914132

ABSTRACT

Ischemic stroke is one of the most prevalent sources of disability in the world. The major brain tissue damage takes place upon the reperfusion of ischemic tissue. Energy failure due to alterations in mitochondrial metabolism and elevated production of reactive oxygen species (ROS) is one of the main causes of brain ischemia-reperfusion (IR) damage. Ischemia resulted in the accumulation of succinate in tissues, which favors the process of reverse electron transfer (RET) when a fraction of electrons derived from succinate is directed to mitochondrial complex I for the reduction of matrix NAD+. We demonstrate that in intact brain mitochondria oxidizing succinate, complex I became damaged and was not able to contribute to the physiological respiration. This process is associated with a decline in ROS release and a dissociation of the enzyme's flavin. This previously undescribed phenomenon represents the major molecular mechanism of injury in stroke and induction of oxidative stress after reperfusion. We also demonstrate that the origin of ROS during RET is flavin of mitochondrial complex I. Our study highlights a novel target for neuroprotection against IR brain injury and provides a sensitive biochemical marker for this process.


Subject(s)
Brain Ischemia/metabolism , Electron Transport Complex I/metabolism , Flavins/metabolism , Mitochondria/metabolism , Reperfusion Injury/metabolism , Animals , Brain/metabolism , Brain/pathology , Brain Ischemia/pathology , Electron Transport , Male , Mice, Inbred C57BL , Mitochondria/pathology , Oxidative Stress , Reactive Oxygen Species/metabolism , Reperfusion Injury/pathology
SELECTION OF CITATIONS
SEARCH DETAIL