Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Biol Evol ; 41(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38857185

ABSTRACT

Body shape and size diversity and their evolutionary rates correlate with species richness at the macroevolutionary scale. However, the molecular genetic mechanisms underlying the morphological diversification across related species are poorly understood. In beetles, which account for one-fourth of the known species, adaptation to different trophic niches through morphological diversification appears to have contributed to species radiation. Here, we explored the key genes for the morphological divergence of the slender to stout body shape related to divergent feeding methods on large to small snails within the genus Carabus. We show that the zinc-finger transcription factor encoded by odd-paired (opa) controls morphological variation in the snail-feeding ground beetle Carabus blaptoides. Specifically, opa was identified as the gene underlying the slender to stout morphological difference between subspecies through genetic mapping and functional analysis via gene knockdown. Further analyses revealed that changes in opa cis-regulatory sequences likely contributed to the differences in body shape and size between C. blaptoides subspecies. Among opa cis-regulatory sequences, single nucleotide polymorphisms on the transcription factor binding sites may be associated with the morphological differences between C. blaptoides subspecies. opa was highly conserved in a wide range of taxa, especially in beetles. Therefore, opa may play an important role in adaptive morphological divergence in beetles.


Subject(s)
Coleoptera , Snails , Transcription Factors , Animals , Coleoptera/genetics , Coleoptera/anatomy & histology , Snails/genetics , Snails/anatomy & histology , Transcription Factors/genetics , Transcription Factors/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Biological Evolution , Polymorphism, Single Nucleotide
2.
Biol Lett ; 19(11): 20230356, 2023 11.
Article in English | MEDLINE | ID: mdl-37990565

ABSTRACT

Congenital fitness-disadvantageous mutations are not maintained in the population; they are purged from the population through processes such as purifying selection. However, these mutations could persist in the population as polymorphisms when it is advantageous for the individuals carrying them in adapting to a specific external environment. We tested this hypothesis using the dimorphic land snail Euhadra peliomphala simodae in Japan; these snails have dark or bright coloured shells. The survival rate of dark snails at hatching was lower than that of the bright ones, as observed in the F1 progenies produced through crossing. Dark snails have a congenital fitness-disadvantageous mutation; however, they also have protection against ultraviolet radiation. They have a higher survival rate than the bright snails in a UV environment, as observed using the UV exposure experiments and UV transmittance measurements. This is a good example of a congenitally disadvantageous mutation that is advantageous for adapting to the external environment. These results explain the maintenance of polymorphism and highlight the genotypic and phenotypic diversity in the wild population.


Subject(s)
Polymorphism, Genetic , Ultraviolet Rays , Humans , Animals , Mutation , Genotype , Snails/genetics
3.
Ecol Evol ; 11(22): 15534-15544, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34824773

ABSTRACT

Ecological release is often attributed to the rapid adaptive diversification of phenotypic traits. However, it is not well understood how natural selection changes its strength and direction through the process of ecological release. Herein, we demonstrated how shell colour of the Japanese land snail Euhadra peliomphala simodae has diversified via a shift in natural selection due to ecological release after migration from the mainland to an island. This snail's shell colour diversified on the island due to disruptive selection after migration from the mainland. We used trail camera traps to identify the cause of natural selection on both the mainland and the island. We then conducted a mark-recapture experiment while collecting microhabitat use data. In total, we captured and marked around 1,700 snails on the mainland, some of which were preyed upon by an unknown predator. The trail camera traps showed that the predator is the large Japanese field mouse Apodemus speciosus, and the predatory frequency was higher on the mainland than on the island. However, this predation did not correlate with shell colour. Microhabitat use on the island was more extensive than on the mainland, with snails on the island using both ground and arboreal microhabitats. A Bayesian estimation showed that the stabilizing selection on shell colour came from factors other than predation. Our results suggest that the course of natural selection was modified due to ecological release after migration from the mainland, explaining one cause of the phenotypic diversification.

4.
Mol Ecol ; 23(23): 5843-54, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25346029

ABSTRACT

The snail-feeding carabid beetle Damaster blaptoides exhibits diverse head and thorax morphologies, and these morphotypes are linked with two alternative feeding behaviours. Stout-shaped beetles feed on snails by crushing the shells, whereas slender-shaped beetles consume snails by inserting their heads into the shells. A trade-off exists between these feeding strategies. Because intermediate-shaped beetles are less proficient in these two behaviours, stout-slender morphological divergence occurs between related species feeding on land snails. To examine the genetic basis of these morphotypes, we conducted morphological analyses and quantitative trait locus (QTL) mapping using backcross offspring between the stout and slender subspecies. The morphological analyses showed that the width and length of the beetle body parts were correlated with each other; in particular, the head width (HW) and thorax length (TL) were strongly negatively correlated. QTL mapping showed that QTLs for HW and TL are located in close proximity to one another on the longest linkage group and that they have positive and negative additive genetic effects. Our results suggest that the adaptive phenotypic sets of a wide head and short thorax and a narrow head and long thorax are based on the closeness of these QTLs. Morphological integration between the head and thorax may play an important role in the adaptive divergence of these beetles.


Subject(s)
Adaptation, Biological/genetics , Coleoptera/anatomy & histology , Coleoptera/genetics , Quantitative Trait Loci , Amplified Fragment Length Polymorphism Analysis , Animals , Chromosome Mapping , Feeding Behavior , Female , Head/anatomy & histology , Japan , Male , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Sex Characteristics , Snails , Thorax/anatomy & histology
5.
Ecology ; 94(11): 2638-44, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24400515

ABSTRACT

Although trade-off curves between fitness components are essential in theoretical studies of ecological specialization, few empirical studies have actually determined these curves experimentally. Using the snail-feeding carabid beetle Damaster blaptoides, which is endemic to the Japanese archipelago, we estimated the trade-off curve for feeding success with alternative foraging behaviors that are linked to varying morphology. First, we crossed a stout-bodied and a slender-bodied subspecies and produced their F1 and backcross hybrids, which exhibited intermediate body shapes. Then we compared the snail-feeding success of these beetles. Stout beetles could eat small snails by crushing shells, whereas slender beetles could eat large snails by inserting their heads into shells. Although hybrids with intermediate body shapes attempted to employ both strategies, they frequently failed at both. The relationship between feeding success rate and beetle body shape was represented by an inward bending curve, which implies a strong trade-off that can cause disruptive selection, leading to ecological specialization. We suggest that the intermediately shaped beetles were maladapted for snail-feeding and that disruptive selection may have played an important role in the morphological divergence of these beetles.


Subject(s)
Coleoptera/genetics , Coleoptera/physiology , Predatory Behavior/physiology , Snails , Adaptation, Physiological , Animals , Hybridization, Genetic
6.
Evolution ; 65(2): 408-18, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20977474

ABSTRACT

A stout-slender dimorphism in body shape is observed among carabid beetles of the subtribe Carabina, which feed on land snails. We hypothesized that this dimorphism has resulted from divergent ecological specialization for feeding on different-sized land snails. Therefore, we examined whether the geographic variation in the body shape of Damaster blaptoides, a representative snail-feeding species in Japan, is correlated with the size of Euhadra, a genus of land snails frequently consumed by D. blaptoides. An analysis of beetle specimens from the whole distribution area of D. blaptoides determined that more slender beetle populations occurred in localities harboring larger snails, whereas more stout beetles inhabited localities harboring smaller snails. This pattern could be adaptive because slender beetles exhibit high feeding performance for large snails by inserting their heads into the shells, whereas stout beetles do so for small snails by crushing the shells. The D. blaptoides populations showed a clear genetic isolation-by-distance pattern, which could be effective in promoting such local adaptation. Thus, food resources as well as geographic isolation may have promoted adaptive divergence of external morphology in the snail-feeding carabid beetles.


Subject(s)
Coleoptera/anatomy & histology , Coleoptera/genetics , Snails , Animals , Coleoptera/classification , Coleoptera/physiology , Japan , Molecular Sequence Data , Phylogeography
7.
Am Nat ; 170(1): 90-100, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17853994

ABSTRACT

We explored how functional trade-offs in resource handling strategies are associated with the divergent morphology of predators. The malacophagous carabid Damaster blaptoides shows two extreme morphologies in the forebody; there is an elongate small-headed type and a stout large-headed type. A feeding experiment showed that the small-headed type obtained a high feeding performance on snails with a thick shell and a large aperture by penetrating the shell with its head. In contrast, the large-headed type showed a high feeding performance on snails that had a thin shell and a small aperture, and they ate these prey by crushing the shell. The large-headed, strong-jawed beetles are efficient at shell crushing but are ineffective at shell entry; the large mandibles and musculature that allow for shell crushing make the beetle's head too wide to penetrate shell apertures. On the other hand, small-headed, weak-jawed beetles crush poorly but can reach into shells for direct predation on snail bodies. These findings are hypothesized to be functional trade-offs between force and fit due to morphological constraints. This trade-off would be a primary mechanism affecting both resource handling ability in animals and phenotypic diversity in predators and prey.


Subject(s)
Adaptation, Physiological , Coleoptera/physiology , Animals , Coleoptera/anatomy & histology , Feeding Behavior , Phenotype , Predatory Behavior , Snails/anatomy & histology , Species Specificity
8.
J Theor Biol ; 247(2): 354-64, 2007 Jul 21.
Article in English | MEDLINE | ID: mdl-17448500

ABSTRACT

We carried out a theoretical investigation of whether ecological character displacement can be caused by reproductive interference. Our model assumes that a quantitative character is associated with both resource use and species recognition, and that heterospecific mating incurs costs. The model shows that ecological character displacement can occur as a consequence of evolution of premating isolation; this conclusion is based on the premise that resource competition is less intense between species than within species and that the ecological character also contributes to premating isolation. When resource competition between species is intense, extinction of either species may occur by competitive exclusion before ecological character divergence. Some observational studies have shown that character displacement in body size is associated with not only resources use but also species recognition. We propose that body size displacement can occur as a consequence of evolution of premating isolation. Our results suggest that ecological character displacement results from reproductive character displacement.


Subject(s)
Biological Evolution , Models, Genetic , Animals , Body Size , Competitive Behavior , Phenotype , Reproduction , Selection, Genetic , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL