Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Mol Med ; 50(12): 1-15, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30523246

ABSTRACT

Targeting hair follicle regeneration has been investigated for the treatment of hair loss, and fundamental studies investigating stem cells and their niche have been described. However, knowledge of stem cell metabolism and the specific regulation of bioenergetics during the hair regeneration process is currently insufficient. Here, we report the hair regrowth-promoting effect of a newly synthesized novel small molecule, IM176OUT05 (IM), which activates stem cell metabolism. IM facilitated stemness induction and maintenance during an induced pluripotent stem cell generation process. IM treatment mildly inhibited mitochondrial oxidative phosphorylation and concurrently increased glycolysis, which accelerated stemness induction during the early phase of reprogramming. More importantly, the topical application of IM accelerated hair follicle regeneration by stimulating the progression of the hair follicle cycle to the anagen phase and increased the hair follicle number in mice. Furthermore, the stem cell population with a glycolytic metabotype appeared slightly earlier in the IM-treated mice. Stem cell and niche signaling involved in the hair regeneration process was also activated by the IM treatment during the early phase of hair follicle regeneration. Overall, these results show that the novel small molecule IM promotes tissue regeneration, specifically in hair regrowth, by restructuring the metabolic configuration of stem cells.


Subject(s)
Alopecia/therapy , Biguanides/therapeutic use , Hair Follicle/physiology , Induced Pluripotent Stem Cells/physiology , Animals , Biguanides/chemical synthesis , Cell Differentiation , Cellular Reprogramming , Energy Metabolism , Glycolysis , Guided Tissue Regeneration , Hair Follicle/drug effects , Humans , Induced Pluripotent Stem Cells/drug effects , MCF-7 Cells , Mice , Mice, Inbred C57BL , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...