Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732110

An observational cohort study of patients diagnosed with endometrial cancer (EC) stage IA G1, or atypical endometrial hyperplasia (AEH), undergoing organ-preserving treatment, was conducted. OBJECTIVE OF THE STUDY: To determine CDO1, PITX2, and CDH13 gene methylation levels in early endometrial cancer and atypical hyperplasia specimens obtained before organ-preserving treatment in the patients with adequate response and with insufficient response to hormonal treatment. MATERIALS AND METHODS: A total of 41 endometrial specimens obtained during diagnostic uterine curettage in women with EC (n = 28) and AEH (n = 13), willing to preserve reproductive function, were studied; 18 specimens of uterine cancer IA stage G1 from peri- and early postmenopausal women (comparison group) were included in the study. The control group included 18 endometrial specimens from healthy women obtained by diagnostic curettage for missed abortion and/or intrauterine adhesions. Methylation levels were analyzed using the modified MS-HRM method. RESULTS: All 13 women with AEH had a complete response (CR) to medical treatment. In the group undergoing organ-preserving treatment for uterine cancer IA stage G1 (n = 28), 14 patients had a complete response (EC CR group) and 14 did not (EC non-CR group). It was found that all groups had statistically significant differences in CDO1 gene methylation levels compared to the control group (p < 0.001) except for the EC CR group (p = 0.21). The p-value for the difference between EC CR and EC non-CR groups was <0.001. The differences in PITX2 gene methylation levels between the control and study groups were also significantly different (p < 0.001), except for the AEH group (p = 0.21). For the difference between EC CR and EC non-CR groups, the p-value was 0.43. For CDH13 gene methylation levels, statistically significant differences were found between the control and EC non-CR groups (p < 0.001), and the control and EC comparison groups (p = 0.005). When comparing the EC CR group with EC non-CR group, the p-value for this gene was <0.001. The simultaneous assessment of CDO1 and CDH13 genes methylation allowed for an accurate distinction between EC CR and EC non-CR groups (AUC = 0.96). CONCLUSION: The assessment of CDO1 and CDH13 gene methylation in endometrial specimens from patients with endometrial cancer (IA stage G1), scheduled for medical treatment, can predict the treatment outcome.


Cadherins , DNA Methylation , Endometrial Neoplasms , Homeobox Protein PITX2 , Homeodomain Proteins , Transcription Factors , Humans , Female , Middle Aged , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/therapy , Cadherins/genetics , Cadherins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Homeodomain Proteins/genetics , Adult , Treatment Outcome , Aged , Biomarkers, Tumor/genetics , Neoplasm Staging
2.
Neurol Res ; : 1-11, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38643375

INTRODUCTION: Experimental studies on animals have demonstrated a higher neuroprotective efficacy of hypercapnic hypoxia compared to normocapnic hypoxia. Respiratory training with hypercapnic hypoxia has shown a positive impact on the functional state of the nervous system in children with cerebral palsy (CP). It can be presumed that the combined effect of moderate hypercapnia and hypoxia will be promising for clinical application within the context of early rehabilitation after ischemic stroke. METHODS: A randomized triple-blind placebo-controlled study was conducted on 102 patients with ischemic stroke, aged 63.07 ± 12.1 years. All patients were diagnosed with ischemic stroke based on neuroimaging criteria and/or clinical criteria within the 48-72 hour timeframe. The experimental group (n = 50) underwent daily respiratory training with hypercapnic hypoxia (FetCO2 5-6%, FetO2 15-16%) using the 'Carbonic' device for 7-11 sessions of 20 minutes each day during the treatment process. The control group (placebo, n = 52) underwent training on a similar device modified for breathing atmospheric air. Neurological examinations were conducted on all patients before the study and on the day after completing the training course. RESULTS: The standard treatment demonstrated effectiveness in terms of neurological status scales in both groups. Intermittent exposure to hypercapnic hypoxia proved more effective in improving neurological function indicators in patients compared to the placebo group: NIHSS scale scores were 40% lower than in the placebo group (p < 0.001); mRS scale scores were 35% lower (p < 0.001); B-ADL-I and RMI indices were higher by 26% (p < 0.01) and 36% (p < 0.001), respectively; MoCA scale results were 13% higher (p < 0.05); HADS and BDI-II scale scores were lower by 35% (p < 0.05) and 25% (p < 0.05), respectively. The increase in MMSE scale scores in the intervention group was 54% higher (p < 0.001), and MoCA scale scores increased by 25% (p < 0.001). CONCLUSION: Respiratory training with hypercapnic hypoxia improves the functional state of the nervous system in patients with ischemic stroke. After conducting further clarifying studies, hypercapnic hypoxia can be considered as an effective method of neurorehabilitation, which can be used as early as 48-72 hours after the onset of stroke.

...