Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
bioRxiv ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38766164

Fluorescence-based contrast agents enable real-time detection of solid tumors and their neovasculature, making them ideal for use in image-guided surgery. Several agents have entered late-stage clinical trials or secured FDA approval, suggesting they are likely to become standard of care in cancer surgeries. One of the key parameters to optimize in contrast agent is molecular size, which dictates much of the pharmacokinetic and pharmacodynamic properties of the agent. Here, we describe the development of a class of protease-activated quenched fluorescent probes in which a N-(2-hydroxypropyl)methacrylamide copolymer is used as the primary scaffold. This copolymer core provides a high degree of probe modularity to generate structures that cannot be achieved with small molecules and peptide probes. We used a previously validated cathepsin substrate and evaluated the effects of length and type of linker as well as positioning of the fluorophore/quencher pair on the polymer core. We found that the polymeric probes could be optimized to achieve increased over-all signal and tumor-to-background ratios compared to the reference small molecule probe. Our results also revealed multiple structure-activity relationship trends that can be used to design and optimize future optical imaging probes. Furthermore, they confirm that a hydrophilic polymer is an ideal scaffold for use in optical imaging contrast probes, allowing a highly modular design that enables efficient optimization to maximize probe accumulation and overall biodistribution properties.

2.
J Biol Chem ; 300(6): 107325, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38685532

Immune checkpoint blockade (ICB) using monoclonal antibodies against programmed cell death protein 1 (PD-1) or programmed death-ligand 1 (PD-L1) is the treatment of choice for cancer immunotherapy. However, low tissue permeability, immunogenicity, immune-related adverse effects, and high cost could be possibly improved using alternative approaches. On the other hand, synthetic low-molecular-weight (LMW) PD-1/PD-L1 blockers have failed to progress beyond in vitro studies, mostly due to low binding affinity or poor pharmacological characteristics resulting from their limited solubility and/or stability. Here, we report the development of polymer-based anti-human PD-L1 antibody mimetics (α-hPD-L1 iBodies) by attaching the macrocyclic peptide WL12 to a N-(2-hydroxypropyl)methacrylamide copolymer. We characterized the binding properties of iBodies using surface plasmon resonance, enzyme-linked immunosorbent assay, flow cytometry, confocal microscopy, and a cellular ICB model. We found that the α-hPD-L1 iBodies specifically target human PD-L1 (hPD-L1) and block the PD-1/PD-L1 interaction in vitro, comparable to the atezolizumab, durvalumab, and avelumab licensed monoclonal antibodies targeting PD-L1. Our findings suggest that iBodies can be used as experimental tools to target hPD-L1 and could serve as a platform to potentiate the therapeutic effect of hPD-L1-targeting small molecules by improving their affinity and pharmacokinetic properties.

3.
Polymers (Basel) ; 16(6)2024 Mar 10.
Article En | MEDLINE | ID: mdl-38543364

In vitro diagnostic methods face non-specific interactions increasing their background level and influencing the efficacy and reproducibility. Currently, the most important and employed blocker of non-specific interactions is bovine serum albumin (BSA), an animal product with some disadvantages like its batch-to-batch variability and contamination with RNases. Herein, we developed amphiphilic water-soluble synthetic copolymers based on the highly biocompatible, non-immunogenic and nontoxic N-2-(hydroxypropyl)methacrylamide (HPMA)-based copolymers or poly(oxazoline)s as highly effective synthetic blockers of non-specific interactions and an effective BSA alternative. The highest blocking capacity was observed for HPMA-based polymers containing two hydrophobic anchors taking advantage of the combination of two structurally different hydrophobic molecules. Polymers prepared by free radical polymerisation with broader dispersity were slightly better in terms of surface covering. The sandwich ELISA evaluating human thyroid-stimulating Hormone in patient samples revealed that the designed polymers can fully replace BSA without compromising the assay results. Importantly, as a fully synthetic material, the developed polymers are fully animal pathogen-free; thus, they are highly important materials for further development.

4.
Small ; : e2306054, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38299478

Nanosized drug crystals have been reported with enhanced apparent solubility, bioavailability, and therapeutic efficacy compared to microcrystal materials, which are not suitable for parenteral administration. However, nanocrystal design and development by bottom-up approaches are challenging, especially considering the non-standardized process parameters in the injection step. This work aims to present a systematic step-by-step approach through Quality-by-Design (QbD) and Design of Experiments (DoE) for synthesizing drug nanocrystals by a semi-automated nanoprecipitation method. Curcumin is used as a drug model due to its well-known poor water solubility (0.6 µg mL-1 , 25 °C). Formal and informal risk assessment tools allow identifying the critical factors. A fractional factorial 24-1 screening design evaluates their impact on the average size and polydispersity of nanocrystals. The optimization of significant factors is done by a Central Composite Design. This response surface methodology supports the rational design of the nanocrystals, identifying and exploring the design space. The proposed joint approach leads to a reproducible, robust, and stable nanocrystalline preparation of 316 nm with a PdI of 0.217 in compliance with the quality profile. An orthogonal approach for particle size and polydispersity characterization allows discarding the formation of aggregates. Overall, the synergy between advanced data analysis and semi-automated standardized nanocrystallization of drugs is highlighted.

5.
Chempluschem ; 89(5): e202300647, 2024 May.
Article En | MEDLINE | ID: mdl-38217401

Herein, we report the development of a macromolecular multifunctional imaging tool for biological investigations, which is comprised of an N-(2-hydroxypropyl)methacrylamide backbone, iridium-based luminescent probe, glutamate carboxypeptidase II (GCPII) targeting ligand, and biotin affinity tag. The iridium luminophore is a tris-cyclometalated complex based on [Ir(ppy)3] with one of its 2-phenylpyridine ligands functionalized to allow conjugation. Synthesized macromolecular probes differed in the structure of the polymer and content of the iridium complex. The applicability of the developed imaging tools has been tested in flow cytometry (FACS) based assay, laser confocal microscopy, and fluorescence lifetime imaging microscopy (FLIM). The FACS analysis has shown that the targeted iBodies containing the iridium luminophore exhibit selective labelling of GCPII expressing cells. This observation was also confirmed in the imaging experiments with laser confocal microscopy. The FLIM experiment has shown that the iBodies with the iridium label exhibit a lifetime greater than 100 ns, which distinguishes them from typically used systems labelled with organic fluorophores exhibiting short fluorescence lifetimes. The results of this investigation indicate that the system exhibits interesting properties, which supports the development of additional biological tools utilizing the key components (iridium complexes, iBody concept), primarily focusing on the longer lifetime of the iridium emitter.


Iridium , Microscopy, Confocal , Polymers , Iridium/chemistry , Humans , Polymers/chemistry , Fluorescent Dyes/chemistry , Microscopy, Fluorescence/methods , Flow Cytometry , Optical Imaging/methods
6.
Macromol Biosci ; 24(2): e2300306, 2024 Feb.
Article En | MEDLINE | ID: mdl-37691533

Herein, an advanced bioconjugation technique to synthesize hybrid polymer-antibody nanoprobes tailored for fluorescent cell barcoding in flow cytometry-based immunophenotyping of leukocytes is applied. A novel approach of attachment combining two fluorescent dyes on the copolymer precursor and its conjugation to antibody is employed to synthesize barcoded nanoprobes of antibody polymer dyes allowing up to six nanoprobes to be resolved in two-dimensional cytometry analysis. The major advantage of these nanoprobes is the construct design in which the selected antibody is labeled with an advanced copolymer bearing two types of fluorophores in different molar ratios. The cells after antibody recognition and binding to the target antigen have a characteristic double fluorescence signal for each nanoprobe providing a unique position on the dot plot, thus allowing antibody-based barcoding of cellular samples in flow cytometry assays. This technique is valuable for cellular assays that require low intersample variability and is demonstrated by the live cell barcoding of clinical samples with B cell abnormalities. In total, the samples from six various donors were successfully barcoded using only two detection channels. This barcoding of clinical samples enables sample preparation and measurement in a single tube.


Antibodies , Fluorescent Dyes , Flow Cytometry/methods , Fluorescent Dyes/chemistry , Immunophenotyping , Polymers
7.
Int J Pharm ; 648: 123619, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37979631

Antibody-mediated targeting is an efficient strategy to enhance the specificity and selectivity of polymer nanomedicines towards the target site, typically a tumor. However, direct covalent coupling of an antibody with a polymer usually results in a partial damage of the antibody binding site accompanied with a compromised biological activity. Here, an original solution based on well-defined non-covalent interactions between tris-nitrilotriacetic acid (trisNTA) and hexahistidine (His-tag) groups, purposefully introduced to the structure of each macromolecule, is described. Specifically, trisNTA groups were attached along the chains of a hydrophilic statistical copolymer based on N-(2-hydroxypropyl)methacrylamide (HPMA), and at the end or along the chains of thermo-responsive di-block copolymers based on N-isopropylmethacrylamide (NIPMAM) and HPMA; His-tag was incorporated to the structure of a recombinant single chain fragment of an anti-GD2 monoclonal antibody (scFv-GD2). Static and dynamic light scattering analyses confirmed that mixing of polymer with scFv-GD2 led to the formation of polymer/scFv-GD2 complexes; those prepared from thermo-responsive polymers formed stable micelles at 37 °C. Flow cytometry and fluorescence microscopy clearly demonstrated antigen-specific binding of the prepared complexes to GD2 positive murine T-cell lymphoma cells EL-4 and human neuroblastoma cells UKF-NB3, while no interaction with GD2 negative murine fibroblast cells NIH-3T3 was observed. These non-covalent polymer protein complexes represent a new generation of highly specific actively targeted polymer therapeutics or diagnostics.


Neoplasms , Polymers , Mice , Humans , Animals , Polymers/chemistry , Nitrilotriacetic Acid , Drug Delivery Systems/methods , Recombinant Proteins
8.
J Control Release ; 353: 549-562, 2023 01.
Article En | MEDLINE | ID: mdl-36470330

Nanomedicines are considered next generation therapeutics with advanced therapeutic properties and reduced side effects. Herein, we introduce tailored linear and star-like water-soluble nanosystems as stimuli-sensitive nanomedicines for the treatment of solid tumors or hematological malignancies. The polymer carrier and drug pharmacokinetics were independently evaluated to elucidate the relationship between the nanosystem structure and its distribution in the body. Positron emission tomography and optical imaging demonstrated enhanced tumor accumulation of the polymer carriers in 4T1-bearing mice with increased tumor-to-blood and tumor-to-muscle ratios. Additionally, there was a significant accumulation of doxorubicin bound to various polymer carriers in EL4 tumors, as well as excellent in vivo therapeutic activity in EL4 lymphoma and moderate efficacy in 4T1 breast carcinoma. The linear nanomedicine showed at least comparable pharmacologic properties to the star-like nanomedicines regarding doxorubicin transport. Therefore, if multiple parameters are considered such as its optimized structure and simple and reproducible synthesis, this polymer carrier system is the most promising for further preclinical and clinical investigations.


Drug Carriers , Polymers , Animals , Mice , Polymers/chemistry , Drug Carriers/chemistry , Nanomedicine , Cell Line, Tumor , Doxorubicin/pharmacokinetics , Disease Models, Animal
10.
Pharmaceutics ; 14(6)2022 Jun 04.
Article En | MEDLINE | ID: mdl-35745774

Mebendazole and other benzimidazole antihelmintics, such as albendazole, fenbendazole, or flubendazole, have been shown to possess antitumour activity, primarily due to their microtubule-disrupting activity. However, the extremely poor water-solubility of mebendazole and other benzimidazoles, resulting in very low bioavailability, is a serious drawback of this class of drugs. Thus, the investigation of their antitumour potential has been limited so far to administering repeated high doses given peroral (p.o.) or to using formulations, such as liposomes. Herein, we report a fully biocompatible, water-soluble, HPMA copolymer-based conjugate bearing mebendazole (P-MBZ; Mw 28-33 kDa) covalently attached through a biodegradable bond, enabling systemic administration. Such an approach not only dramatically improves mebendazole solubility but also significantly prolongs the half-life and ensures tumour accumulation via an enhanced permeation and retention (EPR) effect in vivo. This P-MBZ has remarkable cytostatic and cytotoxic activities in EL-4 T-cell lymphoma, LL2 lung carcinoma, and CT-26 colon carcinoma mouse cell lines in vitro, with corresponding IC50 values of 1.07, 1.51, and 0.814 µM, respectively. P-MBZ also demonstrated considerable antitumour activity in EL-4 tumour-bearing mice when administered intraperitoneal (i.p.), either as a single dose or using 3 intermittent doses. The combination of P-MBZ with immunotherapy based on complexes of IL-2 and anti-IL-2 mAb S4B6, potently stimulating activated and memory CD8+ T cells, as well as NK cells, further improved the therapeutic effect.

11.
Biomacromolecules ; 23(6): 2522-2535, 2022 06 13.
Article En | MEDLINE | ID: mdl-35584053

The derivative of protease inhibitor ritonavir (5-methyl-4-oxohexanoic acid ritonavir ester; RD) was recently recognized as a potent P-gp inhibitor and cancerostatic drug inhibiting the proteasome and STAT3 signaling. Therefore, we designed high-molecular-weight HPMA copolymer conjugates with a PAMAM dendrimer core bearing both doxorubicin (Dox) and RD (Star-RD + Dox) to increase the circulation half-life to maximize simultaneous delivery of Dox and RD into the tumor. Star-RD inhibited P-gp activity, potently sensitizing both low- and high-P-gp-expressing cancer cells to the cytostatic and proapoptotic activity of Dox in vitro. Star-RD + Dox possessed higher cytostatic and proapoptotic activities compared to Star-Dox and the equivalent mixture of Star-Dox and Star-RD in vitro. Star-RD + Dox efficiently inhibited STAT3 signaling and induced caspase-3 activation and DNA fragmentation in cancer cells in vivo. Importantly, Star-RD + Dox was found to have superior antitumor activity in terms of tumor growth inhibition and increased survival of mice bearing P-gp-expressing tumors.


Cytostatic Agents , Neoplasms , Animals , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Mice , Nanomedicine , Polymers , Protease Inhibitors/pharmacology , Ritonavir
12.
J Biol Chem ; 297(5): 101342, 2021 11.
Article En | MEDLINE | ID: mdl-34710374

Peptide display methods are a powerful tool for discovering new ligands of pharmacologically relevant targets. However, the selected ligands often suffer from low affinity. Using phage display, we identified a new bicyclic peptide binder of prostate-specific membrane antigen (PSMA), a metalloprotease frequently overexpressed in prostate cancer. We show that linking multiple copies of a selected low-affinity peptide to a biocompatible water-soluble N-(2-hydroxypropyl)methacrylamide copolymer carrier (iBody) improved binding of the conjugate by several orders of magnitude. Furthermore, using ELISA, enzyme kinetics, confocal microscopy, and other approaches, we demonstrate that the resulting iBody can distinguish between different conformations of the target protein. The possibility to develop stable, fully synthetic, conformation-selective antibody mimetics has potential applications for molecular recognition, diagnosis and treatment of many pathologies. This strategy could significantly contribute to more effective drug discovery and design.


Biomimetic Materials/chemistry , Drug Carriers/chemistry , Peptide Library , Humans , Kallikreins/chemistry , Prostate-Specific Antigen/chemistry
13.
Polymers (Basel) ; 13(15)2021 Jul 30.
Article En | MEDLINE | ID: mdl-34372133

Recently, the antitumor potential of benzimidazole anthelmintics, such as mebendazole and its analogues, have been reported to have minimal side effects, in addition to their well-known anti-parasitic abilities. However, their administration is strongly limited owing to their extremely poor solubility, which highly depletes their overall bioavailability. This study describes the design, synthesis, and physico-chemical properties of polymer-mebendazole nanomedicines for drug repurposing in cancer therapy. The conjugation of mebendazole to water-soluble and biocompatible polymer carrier was carried out via biodegradable bond, relying on the hydrolytic action of lysosomal hydrolases for mebendazole release inside the tumor cells. Five low-molecular-weight mebendazole derivatives, differing in their inner structure, and two polymer conjugates differing in their linker structure, were synthesized. The overall synthetic strategy was designed to enable the modification and polymer conjugation of most benzimidazole-based anthelmintics, such as albendazole, fenbendazole or albendazole, besides the mebendazole. Furthermore, the described methodology may be suitable for conjugation of other biologically active compounds with a heterocyclic N-H group in their molecules.

14.
J Control Release ; 332: 563-580, 2021 04 10.
Article En | MEDLINE | ID: mdl-33722611

Drug repurposing is a promising strategy for identifying new applications for approved drugs. Here, we describe a polymer biomaterial composed of the antiretroviral drug ritonavir derivative (5-methyl-4-oxohexanoic acid ritonavir ester; RD), covalently bound to HPMA copolymer carrier via a pH-sensitive hydrazone bond (P-RD). Apart from being more potent inhibitor of P-glycoprotein in comparison to ritonavir, we found RD to have considerable cytostatic activity in six mice (IC50 ~ 2.3-17.4 µM) and six human (IC50 ~ 4.3-8.7 µM) cancer cell lines, and that RD inhibits the migration and invasiveness of cancer cells in vitro. Importantly, RD inhibits STAT3 phosphorylation in CT26 cells in vitro and in vivo, and expression of the NF-κB p65 subunit, Bcl-2 and Mcl-1 in vitro. RD also dampens chymotrypsin-like and trypsin-like proteasome activity and induces ER stress as documented by induction of PERK phosphorylation and expression of ATF4 and CHOP. P-RD nanomedicine showed powerful antitumor activity in CT26 and B16F10 tumor-bearing mice, which, moreover, synergized with IL-2-based immunotherapy. P-RD proved very promising therapeutic activity also in human FaDu xenografts and negligible toxicity predetermining these nanomedicines as side-effect free nanosystem. The therapeutic potential could be highly increased using the fine-tuned combination with other drugs, i.e. doxorubicin, attached to the same polymer system. Finally, we summarize that described polymer nanomedicines fulfilled all the requirements as potential candidates for deep preclinical investigation.


Antineoplastic Agents , Polymers , Animals , Cell Line, Tumor , Doxorubicin , Hydrogen-Ion Concentration , Mice , Nanomedicine , Proteasome Endopeptidase Complex , Ritonavir
15.
J Pers Med ; 11(2)2021 Feb 10.
Article En | MEDLINE | ID: mdl-33578756

Recently, numerous polymer materials have been employed as drug carrier systems in medicinal research, and their detailed properties have been thoroughly evaluated. Water-soluble polymer carriers play a significant role between these studied polymer systems as they are advantageously applied as carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, antimicrobial molecules, or multidrug resistance inhibitors. Covalent attachment of carried molecules using a biodegradable spacer is strongly preferred, as such design ensures the controlled release of the drug in the place of a desired pharmacological effect in a reasonable time-dependent manner. Importantly, the synthetic polymer biomaterials based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are recognized drug carriers with unique properties that nominate them among the most serious nanomedicines candidates for human clinical trials. This review focuses on advances in the development of HPMA copolymer-based nanomedicines within the passive and active targeting into the place of desired pharmacological effect, tumors, inflammation or bacterial infection sites. Specifically, this review highlights the safety issues of HPMA polymer-based drug carriers concerning the structure of nanomedicines. The main impact consists of the improvement of targeting ability, especially concerning the enhanced and permeability retention (EPR) effect.

16.
Biomaterials ; 235: 119728, 2020 03.
Article En | MEDLINE | ID: mdl-32044514

Design, controlled synthesis, physico-chemical and biological characteristics of novel well-defined biodegradable star-shaped copolymers intended for advanced drug delivery is described. These new biocompatible star copolymers were synthesised by grafting monodispersed semitelechelic linear (sL) N-(2-hydroxypropyl)methacrylamide copolymers onto a 2,2-bis(hydroxymethyl)propionic acid (bisMPA)-based polyester dendritic core of various structures. The hydrodynamic diameter of the star copolymer biomaterials can be tuned from 13 to 31 nm and could be adjusted to a given purpose by proper selection of the bisMPA dendritic core type and generation and by considering the sL copolymer molecular weight and polymer-to-core molar ratio. The hydrolytic degradation was proved for both the star copolymers containing either dendron or dendrimer core, showing the spontaneous hydrolysis in duration of few weeks. Finally, it was shown that the therapy with the biodegradable star conjugate with attached doxorubicin strongly suppresses the tumour growth in mice and is fully curative in most of the treated animals at dose corresponding approximately to one fourth of maximum tolerated dose (MTD) value. Both new biodegradable systems show superior efficacy and tumour accumulation over the first generation of star copolymers containing non-degradable PAMAM core.


Biocompatible Materials , Pharmaceutical Preparations , Acrylamides , Animals , Cell Line, Tumor , Doxorubicin , Drug Carriers , Drug Delivery Systems , Methacrylates , Mice , Polymers
17.
Pharmaceutics ; 12(12)2020 Dec 20.
Article En | MEDLINE | ID: mdl-33419291

Nanomedicines are a novel class of therapeutics that benefit from the nano dimensions of the drug carrier. These nanosystems are highly advantageous mainly within cancer treatment due to their enhanced tumor accumulation. Monolayer tumor cells frequently used in routine preclinical assessment of nanotherapeutics do not have a spatial structural architecture that allows the investigation of the penetration of nanomedicines to predict their behavior in real tumor tissue. Therefore, tumor spheroids from colon carcinoma C26 cells and glioblastoma U87-MG cells were used as 3D in vitro models to analyze the effect of the inner structure, hydrodynamic size, dispersity, and biodegradability of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-based nanomedicines carrying anticancer drug pirarubicin (THP) on the penetration within spheroids. While almost identical penetration through spheroids of linear and star-like copolymers and also their conjugates with THP was observed, THP penetration after nanomedicines application was considerably deeper than for the free THP, thus proving the benefit of polymer carriers. The cytotoxicity of THP-polymer nanomedicines against tumor cell spheroids was almost identical as for the free THP, whereas the 2D cell cytotoxicity of these nanomedicines is usually lower. The nanomedicines thus proved the enhanced efficacy within the more realistic 3D tumor cell spheroid system.

18.
Pharmaceutics ; 11(11)2019 Nov 05.
Article En | MEDLINE | ID: mdl-31694350

Multidrug resistance (MDR) is often caused by the overexpression of efflux pumps, such as ABC transporters, in particular, P-glycoprotein (P-gp). Here, we investigate the di- and tri- block amphiphilic polymer systems based on polypropylene glycol (PPO) and copolymers of (N-(2-hydroxypropyl)methacrylamide) (PHPMA) as potential macromolecular inhibitors of P-gp, and concurrently, carriers of drugs, passively targeting solid tumors by the enhanced permeability and retention (EPR) effect. Interestingly, there were significant differences between the effects of di- and tri- block polymer-based micelles, with the former being significantly more thermodynamically stable and showing much higher P-gp inhibition ability. The presence of Boc-protected hydrazide groups or the Boc-deprotection method did not affect the physico-chemical or biological properties of the block copolymers. Moreover, diblock polymer micelles could be loaded with free PPO containing 5-40 wt % of free PPO, which showed increased P-gp inhibition in comparison to the unloaded micelles. Loaded polymer micelles containing more than 20 wt % free PPO showed a significant increase in toxicity; thus, loaded diblock polymer micelles containing 5-15 wt % free PPO are potential candidates for in vitro and in vivo application as potent MDR inhibitors and drug carriers.

20.
PLoS Biol ; 17(9): e3000354, 2019 09.
Article En | MEDLINE | ID: mdl-31525186

The nucleotide-binding-domain (NBD)-and leucine-rich repeat (LRR)-containing (NLR) family, pyrin-domain-containing 3 (NLRP3) inflammasome drives pathological inflammation in a suite of autoimmune, metabolic, malignant, and neurodegenerative diseases. Additionally, NLRP3 gain-of-function point mutations cause systemic periodic fever syndromes that are collectively known as cryopyrin-associated periodic syndrome (CAPS). There is significant interest in the discovery and development of diarylsulfonylurea Cytokine Release Inhibitory Drugs (CRIDs) such as MCC950/CRID3, a potent and selective inhibitor of the NLRP3 inflammasome pathway, for the treatment of CAPS and other diseases. However, drug discovery efforts have been constrained by the lack of insight into the molecular target and mechanism by which these CRIDs inhibit the NLRP3 inflammasome pathway. Here, we show that the NAIP, CIITA, HET-E, and TP1 (NACHT) domain of NLRP3 is the molecular target of diarylsulfonylurea inhibitors. Interestingly, we find photoaffinity labeling (PAL) of the NACHT domain requires an intact (d)ATP-binding pocket and is substantially reduced for most CAPS-associated NLRP3 mutants. In concordance with this finding, MCC950/CRID3 failed to inhibit NLRP3-driven inflammatory pathology in two mouse models of CAPS. Moreover, it abolished circulating levels of interleukin (IL)-1ß and IL-18 in lipopolysaccharide (LPS)-challenged wild-type mice but not in Nlrp3L351P knock-in mice and ex vivo-stimulated mutant macrophages. These results identify wild-type NLRP3 as the molecular target of MCC950/CRID3 and show that CAPS-related NLRP3 mutants escape efficient MCC950/CRID3 inhibition. Collectively, this work suggests that MCC950/CRID3-based therapies may effectively treat inflammation driven by wild-type NLRP3 but not CAPS-associated mutants.


Cryopyrin-Associated Periodic Syndromes/genetics , Furans/pharmacology , Inflammasomes/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Sulfonamides/pharmacology , Animals , Cytokines/antagonists & inhibitors , Disease Models, Animal , Drug Evaluation, Preclinical , HEK293 Cells , Heterocyclic Compounds, 4 or More Rings , Humans , Indenes , Lipopolysaccharides , Macrophages/drug effects , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Protein Domains , Sulfones
...