Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Nat Commun ; 15(1): 3335, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637555

ABSTRACT

Understanding the function of rare non-coding variants represents a significant challenge. Using MapUTR, a screening method, we studied the function of rare 3' UTR variants affecting mRNA abundance post-transcriptionally. Among 17,301 rare gnomAD variants, an average of 24.5% were functional, with 70% in cancer-related genes, many in critical cancer pathways. This observation motivated an interrogation of 11,929 somatic mutations, uncovering 3928 (33%) functional mutations in 155 cancer driver genes. Functional MapUTR variants were enriched in microRNA- or protein-binding sites and may underlie outlier gene expression in tumors. Further, we introduce untranslated tumor mutational burden (uTMB), a metric reflecting the amount of somatic functional MapUTR variants of a tumor and show its potential in predicting patient survival. Through prime editing, we characterized three variants in cancer-relevant genes (MFN2, FOSL2, and IRAK1), demonstrating their cancer-driving potential. Our study elucidates the function of tens of thousands of non-coding variants, nominates non-coding cancer driver mutations, and demonstrates their potential contributions to cancer.


Subject(s)
Neoplasms , Oncogenes , Humans , 3' Untranslated Regions/genetics , RNA, Messenger/genetics , Mutation , Neoplasms/genetics
2.
Cell Genom ; 3(10): 100404, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37868037

ABSTRACT

Genome-wide association studies (GWASs) have successfully identified 145 genomic regions that contribute to schizophrenia risk, but linkage disequilibrium makes it challenging to discern causal variants. We performed a massively parallel reporter assay (MPRA) on 5,173 fine-mapped schizophrenia GWAS variants in primary human neural progenitors and identified 439 variants with allelic regulatory effects (MPRA-positive variants). Transcription factor binding had modest predictive power, while fine-map posterior probability, enhancer overlap, and evolutionary conservation failed to predict MPRA-positive variants. Furthermore, 64% of MPRA-positive variants did not exhibit expressive quantitative trait loci signature, suggesting that MPRA could identify yet unexplored variants with regulatory potentials. To predict the combinatorial effect of MPRA-positive variants on gene regulation, we propose an accessibility-by-contact model that combines MPRA-measured allelic activity with neuronal chromatin architecture.

3.
Nat Commun ; 14(1): 4636, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37532706

ABSTRACT

Protein-protein interactions (PPIs) are crucial for biological functions and have applications ranging from drug design to synthetic cell circuits. Coiled-coils have been used as a model to study the sequence determinants of specificity. However, building well-behaved sets of orthogonal pairs of coiled-coils remains challenging due to inaccurate predictions of orthogonality and difficulties in testing at scale. To address this, we develop the next-generation bacterial two-hybrid (NGB2H) method, which allows for the rapid exploration of interactions of programmed protein libraries in a quantitative and scalable way using next-generation sequencing readout. We design, build, and test large sets of orthogonal synthetic coiled-coils, assayed over 8,000 PPIs, and used the dataset to train a more accurate coiled-coil scoring algorithm (iCipa). After characterizing nearly 18,000 new PPIs, we identify to the best of our knowledge the largest set of orthogonal coiled-coils to date, with fifteen on-target interactions. Our approach provides a powerful tool for the design of orthogonal PPIs.


Subject(s)
Algorithms , Proteins , Proteins/genetics , Proteins/metabolism
4.
bioRxiv ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37214829

ABSTRACT

Cellular transcription enables cells to adapt to various stimuli and maintain homeostasis. Transcription factors bind to transcription response elements (TREs) in gene promoters, initiating transcription. Synthetic promoters, derived from natural TREs, can be engineered to control exogenous gene expression using endogenous transcription machinery. This technology has found extensive use in biological research for applications including reporter gene assays, biomarker development, and programming synthetic circuits in living cells. However, a reliable and precise method for selecting minimally-sized synthetic promoters with desired background, amplitude, and stimulation response profiles has been elusive. In this study, we introduce a massively parallel reporter assay library containing 6184 synthetic promoters, each less than 250 bp in length. This comprehensive library allows for rapid identification of promoters with optimal transcriptional output parameters across multiple cell lines and stimuli. We showcase this library's utility to identify promoters activated in unique cell types, and in response to metabolites, mitogens, cellular toxins, and agonism of both aminergic and non-aminergic GPCRs. We further show these promoters can be used in luciferase reporter assays, eliciting 50-100 fold dynamic ranges in response to stimuli. Our platform is effective, easily implemented, and provides a solution for selecting short-length promoters with precise performance for a multitude of applications.

5.
Science ; 377(6608): eabi8654, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35981026

ABSTRACT

Predicting the function of noncoding variation is a major challenge in modern genetics. In this study, we used massively parallel reporter assays to screen 5706 variants identified from genome-wide association studies for both Alzheimer's disease (AD) and progressive supranuclear palsy (PSP), identifying 320 functional regulatory variants (frVars) across 27 loci, including the complex 17q21.31 region. We identified and validated multiple risk loci using CRISPR interference or excision, including complement 4 (C4A) and APOC1 in AD and PLEKHM1 and KANSL1 in PSP. Functional variants disrupt transcription factor binding sites converging on enhancers with cell type-specific activity in PSP and AD, implicating a neuronal SP1-driven regulatory network in PSP pathogenesis. These analyses suggest that noncoding genetic risk is driven by common genetic variants through their aggregate activity on specific transcriptional programs.


Subject(s)
Alzheimer Disease , Chromosomes, Human, Pair 17 , Gene Regulatory Networks , Genetic Variation , Untranslated Regions , Alzheimer Disease/genetics , Chromosomes, Human, Pair 17/genetics , Genes, Reporter , Genetic Loci , Genome-Wide Association Study , Humans , Risk Factors , Supranuclear Palsy, Progressive/genetics , Untranslated Regions/genetics
6.
Nat Biomed Eng ; 5(7): 657-665, 2021 07.
Article in English | MEDLINE | ID: mdl-34211145

ABSTRACT

Frequent and widespread testing of members of the population who are asymptomatic for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for the mitigation of the transmission of the virus. Despite the recent increases in testing capacity, tests based on quantitative polymerase chain reaction (qPCR) assays cannot be easily deployed at the scale required for population-wide screening. Here, we show that next-generation sequencing of pooled samples tagged with sample-specific molecular barcodes enables the testing of thousands of nasal or saliva samples for SARS-CoV-2 RNA in a single run without the need for RNA extraction. The assay, which we named SwabSeq, incorporates a synthetic RNA standard that facilitates end-point quantification and the calling of true negatives, and that reduces the requirements for automation, purification and sample-to-sample normalization. We used SwabSeq to perform 80,000 tests, with an analytical sensitivity and specificity comparable to or better than traditional qPCR tests, in less than two months with turnaround times of less than 24 h. SwabSeq could be rapidly adapted for the detection of other pathogens.


Subject(s)
RNA, Viral/genetics , SARS-CoV-2/pathogenicity , Saliva/virology , High-Throughput Nucleotide Sequencing , Humans , SARS-CoV-2/genetics , Sensitivity and Specificity
7.
Clin Chem ; 68(1): 143-152, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34286830

ABSTRACT

BACKGROUND: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse-transcription PCR (RT-qPCR). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce. To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS: We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral inactivation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS: After optimization, SwabExpress has a low limit of detection at 2-4 molecules/µL, 100% sensitivity, and 99.4% specificity when compared side by side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION: SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 , COVID-19/diagnosis , Clinical Laboratory Techniques , Humans , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Specimen Handling
8.
Nat Commun ; 12(1): 325, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436562

ABSTRACT

A crucial step towards engineering biological systems is the ability to precisely tune the genetic response to environmental stimuli. In the case of Escherichia coli inducible promoters, our incomplete understanding of the relationship between sequence composition and gene expression hinders our ability to predictably control transcriptional responses. Here, we profile the expression dynamics of 8269 rationally designed, IPTG-inducible promoters that collectively explore the individual and combinatorial effects of RNA polymerase and LacI repressor binding site strengths. We then fit a statistical mechanics model to measured expression that accurately models gene expression and reveals properties of theoretically optimal inducible promoters. Furthermore, we characterize three alternative promoter architectures and show that repositioning binding sites within promoters influences the types of combinatorial effects observed between promoter elements. In total, this approach enables us to deconstruct relationships between inducible promoter elements and discover practical insights for engineering inducible promoters with desirable characteristics.


Subject(s)
Isopropyl Thiogalactoside/pharmacology , Logic , Promoter Regions, Genetic , Binding Sites , Biophysical Phenomena , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/drug effects , Escherichia coli/metabolism , Fluorescence , Genes, Reporter , Mutation/genetics , Operator Regions, Genetic/genetics , Protein Binding , Reproducibility of Results , Thermodynamics , Transcription Factors/metabolism
9.
bioRxiv ; 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-32511368

ABSTRACT

BACKGROUND: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse transcription PCR (RT-qPCR) (1). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce (2). To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS: We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral activation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS: After optimization, SwabExpress has a low limit of detection at 2-4 molecules/uL, 100% sensitivity, and 99.4% specificity when compared side-by-side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION: SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.

10.
medRxiv ; 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-32909008

ABSTRACT

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is due to the high rates of transmission by individuals who are asymptomatic at the time of transmission1,2. Frequent, widespread testing of the asymptomatic population for SARS-CoV-2 is essential to suppress viral transmission. Despite increases in testing capacity, multiple challenges remain in deploying traditional reverse transcription and quantitative PCR (RT-qPCR) tests at the scale required for population screening of asymptomatic individuals. We have developed SwabSeq, a high-throughput testing platform for SARS-CoV-2 that uses next-generation sequencing as a readout. SwabSeq employs sample-specific molecular barcodes to enable thousands of samples to be combined and simultaneously analyzed for the presence or absence of SARS-CoV-2 in a single run. Importantly, SwabSeq incorporates an in vitro RNA standard that mimics the viral amplicon, but can be distinguished by sequencing. This standard allows for end-point rather than quantitative PCR, improves quantitation, reduces requirements for automation and sample-to-sample normalization, enables purification-free detection, and gives better ability to call true negatives. After setting up SwabSeq in a high-complexity CLIA laboratory, we performed more than 80,000 tests for COVID-19 in less than two months, confirming in a real world setting that SwabSeq inexpensively delivers highly sensitive and specific results at scale, with a turn-around of less than 24 hours. Our clinical laboratory uses SwabSeq to test both nasal and saliva samples without RNA extraction, while maintaining analytical sensitivity comparable to or better than traditional RT-qPCR tests. Moving forward, SwabSeq can rapidly scale up testing to mitigate devastating spread of novel pathogens.

11.
Elife ; 92020 11 12.
Article in English | MEDLINE | ID: mdl-33179598

ABSTRACT

Sequence variation in regulatory DNA alters gene expression and shapes genetically complex traits. However, the identification of individual, causal regulatory variants is challenging. Here, we used a massively parallel reporter assay to measure the cis-regulatory consequences of 5832 natural DNA variants in the promoters of 2503 genes in the yeast Saccharomyces cerevisiae. We identified 451 causal variants, which underlie genetic loci known to affect gene expression. Several promoters harbored multiple causal variants. In five promoters, pairs of variants showed non-additive, epistatic interactions. Causal variants were enriched at conserved nucleotides, tended to have low derived allele frequency, and were depleted from promoters of essential genes, which is consistent with the action of negative selection. Causal variants were also enriched for alterations in transcription factor binding sites. Models integrating these features provided modest, but statistically significant, ability to predict causal variants. This work revealed a complex molecular basis for cis-acting regulatory variation.


Subject(s)
Gene Expression Regulation, Fungal/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Crosses, Genetic , DNA Barcoding, Taxonomic , DNA, Fungal/genetics , Gene Library , Genetic Variation , Promoter Regions, Genetic/genetics , Quantitative Trait Loci , Saccharomyces cerevisiae Proteins/genetics
12.
Elife ; 92020 10 21.
Article in English | MEDLINE | ID: mdl-33084570

ABSTRACT

The >800 human G protein-coupled receptors (GPCRs) are responsible for transducing diverse chemical stimuli to alter cell state- and are the largest class of drug targets. Their myriad structural conformations and various modes of signaling make it challenging to understand their structure and function. Here, we developed a platform to characterize large libraries of GPCR variants in human cell lines with a barcoded transcriptional reporter of G protein signal transduction. We tested 7800 of 7828 possible single amino acid substitutions to the beta-2 adrenergic receptor (ß2AR) at four concentrations of the agonist isoproterenol. We identified residues specifically important for ß2AR signaling, mutations in the human population that are potentially loss of function, and residues that modulate basal activity. Using unsupervised learning, we identify residues critical for signaling, including all major structural motifs and molecular interfaces. We also find a previously uncharacterized structural latch spanning the first two extracellular loops that is highly conserved across Class A GPCRs and is conformationally rigid in both the inactive and active states of the receptor. More broadly, by linking deep mutational scanning with engineered transcriptional reporters, we establish a generalizable method for exploring pharmacogenomics, structure and function across broad classes of drug receptors.


Subject(s)
DNA Mutational Analysis/methods , Receptors, G-Protein-Coupled/chemistry , Cloning, Molecular , DNA Barcoding, Taxonomic , Gene Editing , HEK293 Cells , Humans , Machine Learning , Models, Molecular , Protein Conformation , Receptors, G-Protein-Coupled/metabolism
13.
Nucleic Acids Res ; 48(16): e95, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32692349

ABSTRACT

Multiplexed assays allow functional testing of large synthetic libraries of genetic elements, but are limited by the designability, length, fidelity and scale of the input DNA. Here, we improve DropSynth, a low-cost, multiplexed method that builds gene libraries by compartmentalizing and assembling microarray-derived oligonucleotides in vortexed emulsions. By optimizing enzyme choice, adding enzymatic error correction and increasing scale, we show that DropSynth can build thousands of gene-length fragments at >20% fidelity.


Subject(s)
Gene Library , Genes, Synthetic , Nucleic Acid Amplification Techniques/methods , Oligonucleotides/genetics , Emulsions/chemistry , Escherichia coli/genetics
14.
Cell Syst ; 11(1): 75-85.e7, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32603702

ABSTRACT

In eukaryotes, transcription factors (TFs) orchestrate gene expression by binding to TF-binding sites (TFBSs) and localizing transcriptional co-regulators and RNA polymerase II to cis-regulatory elements. However, we lack a basic understanding of the relationship between TFBS composition and their quantitative transcriptional responses. Here, we measured expression driven by 17,406 synthetic cis-regulatory elements with varied compositions of a model TFBS, the c-AMP response element (CRE) by using massively parallel reporter assays (MPRAs). We find CRE number, affinity, and promoter proximity largely determines expression. In addition, we observe expression modulation based on the spacing between CREs and CRE distance to the promoter, where expression follows a helical periodicity. Finally, we compare library expression between an episomal MPRA and a genomically integrated MPRA, where a single cis-regulatory element is assayed per cell at a defined locus. These assays largely recapitulate each other, although weaker, non-canonical CREs exhibit greater activity in a genomic context.


Subject(s)
Adenosine Monophosphate/metabolism , Genomics/methods , Plasmids/metabolism , Response Elements/genetics , Humans
15.
Cell Syst ; 8(3): 254-260.e6, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30904378

ABSTRACT

G protein-coupled receptors (GPCRs) are central to how mammalian cells sense and respond to chemicals. Mammalian olfactory receptors (ORs), the largest family of GPCRs, mediate the sense of smell through activation by small molecules, though for most bonafide ligands, they have not been identified. Here, we introduce a platform to screen large chemical panels against multiplexed GPCR libraries using next-generation sequencing of barcoded genetic reporters in stably engineered human cell lines. We mapped 39 mammalian ORs against 181 odorants and identified 79 interactions that have not been reported to our knowledge, including ligands for 15 previously orphaned receptors. This multiplexed receptor assay allows the cost-effective mapping of large chemical libraries to receptor repertoires at scale.


Subject(s)
Odorants , Receptors, Odorant/metabolism , Sequence Analysis, RNA/methods , Signal Transduction , Smell , Animals , Cell Line , Gene Expression Profiling , Humans , Ligands , Mammals/metabolism , Mammals/physiology
16.
Biochemistry ; 58(11): 1539-1551, 2019 03 19.
Article in English | MEDLINE | ID: mdl-29388765

ABSTRACT

Promoters are the key drivers of gene expression and are largely responsible for the regulation of cellular responses to time and environment. In Escherichia coli, decades of studies have revealed most, if not all, of the sequence elements necessary to encode promoter function. Despite our knowledge of these motifs, it is still not possible to predict the strength and regulation of a promoter from primary sequence alone. Here we develop a novel multiplexed assay to study promoter function in E. coli by building a site-specific genomic recombination-mediated cassette exchange system that allows for the facile construction and testing of large libraries of genetic designs integrated into precise genomic locations. We build and test a library of 10898 σ70 promoter variants consisting of all combinations of a set of eight -35 elements, eight -10 elements, three UP elements, eight spacers, and eight backgrounds. We find that the -35 and -10 sequence elements can explain approximately 74% of the variance in promoter strength within our data set using a simple log-linear statistical model. Simple neural network models explain >95% of the variance in our data set by capturing nonlinear interactions with the spacer, background, and UP elements.


Subject(s)
Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/physiology , Sigma Factor/genetics , Base Sequence/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial/genetics , Gene Library , Genomics/methods , Nerve Net/metabolism , Protein Binding/genetics , Sigma Factor/metabolism , Transcription, Genetic/genetics
17.
Mol Cell ; 73(1): 183-194.e8, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30503770

ABSTRACT

Mutations that lead to splicing defects can have severe consequences on gene function and cause disease. Here, we explore how human genetic variation affects exon recognition by developing a multiplexed functional assay of splicing using Sort-seq (MFASS). We assayed 27,733 variants in the Exome Aggregation Consortium (ExAC) within or adjacent to 2,198 human exons in the MFASS minigene reporter and found that 3.8% (1,050) of variants, most of which are extremely rare, led to large-effect splice-disrupting variants (SDVs). Importantly, we find that 83% of SDVs are located outside of canonical splice sites, are distributed evenly across distinct exonic and intronic regions, and are difficult to predict a priori. Our results indicate extant, rare genetic variants can have large functional effects on splicing at appreciable rates, even outside the context of disease, and MFASS enables their empirical assessment at scale.


Subject(s)
Exons , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Mutation , RNA Splicing , Sequence Analysis, DNA/methods , Cell Separation , Computational Biology , Flow Cytometry , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Introns , K562 Cells , Oligonucleotide Array Sequence Analysis , Reproducibility of Results
18.
Nat Methods ; 15(5): 323-329, 2018 05.
Article in English | MEDLINE | ID: mdl-30052624

ABSTRACT

Robust and predictably performing synthetic circuits rely on the use of well-characterized regulatory parts across different genetic backgrounds and environmental contexts. Here we report the large-scale metagenomic mining of thousands of natural 5' regulatory sequences from diverse bacteria, and their multiplexed gene expression characterization in industrially relevant microbes. We identified sequences with broad and host-specific expression properties that are robust in various growth conditions. We also observed substantial differences between species in terms of their capacity to utilize exogenous regulatory sequences. Finally, we demonstrate programmable species-selective gene expression that produces distinct and diverse output patterns in different microbes. Together, these findings provide a rich resource of characterized natural regulatory sequences and a framework that can be used to engineer synthetic gene circuits with unique and tunable cross-species functionality and properties, and also suggest the prospect of ultimately engineering complex behaviors at the community level.


Subject(s)
Gene Expression Regulation/physiology , Metagenomics/methods , Regulatory Elements, Transcriptional/physiology , Data Mining , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Engineering/methods , Metabolic Engineering , Metabolic Networks and Pathways , Species Specificity , Synthetic Biology/methods
19.
Nat Genet ; 50(4): 510-514, 2018 04.
Article in English | MEDLINE | ID: mdl-29632376

ABSTRACT

Understanding the functional effects of DNA sequence variants is of critical importance for studies of basic biology, evolution, and medical genetics; however, measuring these effects in a high-throughput manner is a major challenge. One promising avenue is precise editing with the CRISPR-Cas9 system, which allows for generation of DNA double-strand breaks (DSBs) at genomic sites matching the targeting sequence of a guide RNA (gRNA). Recent studies have used CRISPR libraries to generate many frameshift mutations genome wide through faulty repair of CRISPR-directed breaks by nonhomologous end joining (NHEJ) 1 . Here, we developed a CRISPR-library-based approach for highly efficient and precise genome-wide variant engineering. We used our method to examine the functional consequences of premature-termination codons (PTCs) at different locations within all annotated essential genes in yeast. We found that most PTCs were highly deleterious unless they occurred close to the 3' end of the gene and did not affect an annotated protein domain. Unexpectedly, we discovered that some putatively essential genes are dispensable, whereas others have large dispensable regions. This approach can be used to profile the effects of large classes of variants in a high-throughput manner.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Codon, Nonsense , DNA Breaks, Double-Stranded , DNA, Fungal/genetics , Genetic Variation , Genome, Fungal , Humans , Models, Genetic , RNA, Guide, Kinetoplastida/genetics , Saccharomyces cerevisiae/genetics
20.
Science ; 359(6373): 343-347, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29301959

ABSTRACT

Improving our ability to construct and functionally characterize DNA sequences would broadly accelerate progress in biology. Here, we introduce DropSynth, a scalable, low-cost method to build thousands of defined gene-length constructs in a pooled (multiplexed) manner. DropSynth uses a library of barcoded beads that pull down the oligonucleotides necessary for a gene's assembly, which are then processed and assembled in water-in-oil emulsions. We used DropSynth to successfully build more than 7000 synthetic genes that encode phylogenetically diverse homologs of two essential genes in Escherichia coli We tested the ability of phosphopantetheine adenylyltransferase homologs to complement a knockout E. coli strain in multiplex, revealing core functional motifs and reasons underlying homolog incompatibility. DropSynth coupled with multiplexed functional assays allows us to rationally explore sequence-function relationships at an unprecedented scale.


Subject(s)
Genes, Synthetic , Proteins/physiology , Emulsions , Escherichia coli/genetics , Gene Knockout Techniques , Genes, Essential , Genetic Complementation Test , Oligonucleotides/chemical synthesis , Oligonucleotides/chemistry , Oligonucleotides/genetics , Proteins/genetics , Synthetic Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...