Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Expert Rev Hematol ; : 1-8, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39110722

ABSTRACT

INTRODUCTION: Children receiving treatment for acute myeloid leukemia (AML) are at high risk of invasive fungal disease (IFD). Evidence from pediatric studies support the efficacy of antifungal prophylaxis in reducing the burden of IFD in children receiving therapy for AML, yet existing antifungal agents have specific limitations and comparative data to inform the optimal prophylactic approach are lacking. AREAS COVERED: This review summarizes the epidemiology of invasive fungal disease (IFD) and current antifungal prophylaxis recommendations for children with acute myeloid leukemia (AML). Challenges with currently available antifungal agents and considerations related to the changing landscape of AML therapy are reviewed. A keyword search was conducted to identify pediatric studies regarding IFD and antifungal prophylaxis in children with AML up to December 2023. EXPERT OPINION: Children undergoing treatment for AML are recommended to receive antifungal prophylaxis to reduce risk of IFD, with tolerability, pharmacokinetics, feasibility of administration, and drug interactions all factors that require consideration in this context. With increased use of novel targeted agents for AML therapy, together with the development of new antifungal agents, data from well-designed clinical studies to optimize prophylactic approaches will be essential to limit the burden of IFD in this vulnerable cohort.

2.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999925

ABSTRACT

Copy number alterations (CNAs), resulting from the gain or loss of genetic material from as little as 50 base pairs or as big as entire chromosome(s), have been associated with many congenital diseases, de novo syndromes and cancer. It is established that CNAs disturb the dosage of genomic regions including enhancers/promoters, long non-coding RNA and gene(s) among others, ultimately leading to an altered balance of key cellular functions. In cancer, CNAs have been associated with almost all steps of the disease: predisposition, initiation, development, maintenance, response to treatment, resistance, and relapse. Therefore, understanding how specific CNAs contribute to tumourigenesis may provide prognostic insight and ultimately lead to the development of new therapeutic approaches to improve patient outcomes. In this review, we provide a snapshot of what is currently known about CNAs and cancer, incorporating topics regarding their detection, clinical impact, origin, and nature, and discuss the integration of innovative genetic engineering strategies, to highlight the potential for targeting CNAs using novel, dosage-sensitive and less toxic therapies for CNA-driven cancer.


Subject(s)
DNA Copy Number Variations , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Animals
3.
Ther Adv Hematol ; 15: 20406207241257901, 2024.
Article in English | MEDLINE | ID: mdl-39050114

ABSTRACT

Children with Down syndrome (DS) are at increased risk of developing haematological malignancies, in particular acute megakaryoblastic leukaemia and acute lymphoblastic leukaemia. The microenvironment established by abnormal haematopoiesis driven by trisomy 21 is compounded by additional genetic and epigenetic changes that can drive leukaemogenesis in patients with DS. GATA-binding protein 1 (GATA1) somatic mutations are implicated in the development of transient abnormal myelopoiesis and the progression to myeloid leukaemia of DS (ML-DS) and provide a model of the multi-step process of leukaemogenesis in DS. This review summarises key genetic drivers for the development of leukaemia in patients with DS, the biology and treatment of ML-DS and DS-associated acute lymphoblastic leukaemia, late effects of treatments for DS-leukaemias and the focus for future targeted therapy.

4.
Nat Med ; 30(7): 1913-1922, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844796

ABSTRACT

Recent research showed that precision medicine can identify new treatment strategies for patients with childhood cancers. However, it is unclear which patients will benefit most from precision-guided treatment (PGT). Here we report consecutive data from 384 patients with high-risk pediatric cancer (with an expected cure rate of less than 30%) who had at least 18 months of follow-up on the ZERO Childhood Cancer Precision Medicine Program PRecISion Medicine for Children with Cancer (PRISM) trial. A total of 256 (67%) patients received PGT recommendations and 110 (29%) received a recommended treatment. PGT resulted in a 36% objective response rate and improved 2-year progression-free survival compared with standard of care (26% versus 12%; P = 0.049) or targeted agents not guided by molecular findings (26% versus 5.2%; P = 0.003). PGT based on tier 1 evidence, PGT targeting fusions or commenced before disease progression had the greatest clinical benefit. Our data show that PGT informed by comprehensive molecular profiling significantly improves outcomes for children with high-risk cancers. ClinicalTrials.gov registration: NCT03336931.


Subject(s)
Neoplasms , Precision Medicine , Humans , Precision Medicine/methods , Child , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/drug therapy , Female , Male , Adolescent , Child, Preschool , Infant , Progression-Free Survival , Treatment Outcome
5.
Cancer Discov ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916500

ABSTRACT

Acute lymphoblastic leukemia expressing the gamma delta T cell receptor (yo T-ALL) is a poorly understood disease. We studied 200 children with yo T-ALL from 13 clinical study groups to understand the clinical and genetic features of this disease. We found age and genetic drivers were significantly associated with outcome. yo T-ALL diagnosed in children under three years of age was extremely high-risk and enriched for genetic alterations that result in both LMO2 activation and STAG2 inactivation. Mechanistically, using patient samples and isogenic cell lines, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping, resulting in deregulation of gene expression associated with T-cell differentiation. High throughput drug screening identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which can be targeted by Poly(ADP-ribose) polymerase (PARP) inhibition. These data provide a diagnostic framework for classification and risk stratification of pediatric yo T-ALL.

6.
Sci Rep ; 14(1): 12396, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811646

ABSTRACT

The rarity of the mesenchymal stem cell (MSC) population poses a significant challenge for MSC research. Therefore, these cells are often expanded in vitro, prior to use. However, long-term culture has been shown to alter primary MSC properties. Additionally, early passage primary MSCs in culture are often assumed to represent the primary MSC population in situ, however, little research has been done to support this. Here, we compared the transcriptomic profiles of murine MSCs freshly isolated from the bone marrow to those that had been expanded in culture for 10 days. We identified that a single passage in culture extensively altered MSC molecular signatures associated with cell cycling, differentiation and immune response. These findings indicate the critical importance of the MSC source, highlighting the need for optimization of culture conditions to minimize the impact on MSC biology and a transition towards in vivo methodologies for the study of MSC function.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice , Cells, Cultured , Transcriptome , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Culture Techniques/methods , Gene Expression Profiling , Mice, Inbred C57BL , Cell Proliferation , Cell Cycle
7.
BMJ Open ; 14(5): e085115, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38760050

ABSTRACT

INTRODUCTION: DNA-informed prescribing (termed pharmacogenomics, PGx) is the epitome of personalised medicine. Despite international guidelines existing, its implementation in paediatric oncology remains sparse. METHODS AND ANALYSIS: Minimising Adverse Drug Reactions and Verifying Economic Legitimacy-Pharmacogenomics Implementation in Children is a national prospective, multicentre, randomised controlled trial assessing the impact of pre-emptive PGx testing for actionable PGx variants on adverse drug reaction (ADR) incidence in patients with a new cancer diagnosis or proceeding to haematopoetic stem cell transplant. All ADRs will be prospectively collected by surveys completed by parents/patients using the National Cancer Institute Pediatric Patient Reported [Ped-PRO]-Common Terminology Criteria for Adverse Events (CTCAE) (weeks 1, 6 and 12). Pharmacist will assess for causality and severity in semistructured interviews using the CTCAE and Liverpool Causality Assessment Tool. The primary outcome is a reduction in ADRs among patients with actionable PGx variants, where an ADR will be considered as any CTCAE grade 2 and above for non-haematological toxicities and any CTCAE grade 3 and above for haematological toxicities Cost-effectiveness of pre-emptive PGx (secondary outcome) will be compared with standard of care using hospital inpatient and outpatient data along with the validated Childhood Health Utility 9D Instrument. Power and statistics considerations: A sample size of 440 patients (220 per arm) will provide 80% power to detect a 24% relative risk reduction in the primary endpoint of ADRs (two-sided α=5%, 80% vs 61%), allowing for 10% drop-out. ETHICS AND DISSEMINATION: The ethics approval of the trial has been obtained from the Royal Children's Hospital Ethics Committee (HREC/89083/RCHM-2022). The ethics committee of each participating centres nationally has undertaken an assessment of the protocol and governance submission. TRIAL REGISTRATION NUMBER: NCT05667766.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Pharmacogenetics , Humans , Child , Drug-Related Side Effects and Adverse Reactions/prevention & control , Prospective Studies , Randomized Controlled Trials as Topic , Neoplasms/drug therapy , Neoplasms/genetics , Multicenter Studies as Topic , Precision Medicine/economics , Hematopoietic Stem Cell Transplantation
8.
J Immunother Cancer ; 12(4)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580329

ABSTRACT

BACKGROUND: Hematopoietic cell transplantation (HCT) is an effective treatment for pediatric patients with high-risk, refractory, or relapsed acute myeloid leukemia (AML). However, a large proportion of transplanted patients eventually die due to relapse. To improve overall survival, we propose a combined strategy based on cord blood (CB)-HCT with the application of AML-specific T cell receptor (TCR)-engineered T cell therapy derived from the same CB graft. METHODS: We produced CB-CD8+ T cells expressing a recombinant TCR (rTCR) against Wilms tumor 1 (WT1) while lacking endogenous TCR (eTCR) expression to avoid mispairing and competition. CRISPR-Cas9 multiplexing was used to target the constant region of the endogenous TCRα (TRAC) and TCRß (TRBC) chains. Next, an optimized method for lentiviral transduction was used to introduce recombinant WT1-TCR. The cytotoxic and migration capacity of the product was evaluated in coculture assays for both cell lines and primary pediatric AML blasts. RESULTS: The gene editing and transduction procedures achieved high efficiency, with up to 95% of cells lacking eTCR and over 70% of T cells expressing rWT1-TCR. WT1-TCR-engineered T cells lacking the expression of their eTCR (eTCR-/- WT1-TCR) showed increased cell surface expression of the rTCR and production of cytotoxic cytokines, such as granzyme A and B, perforin, interferon-γ (IFNγ), and tumor necrosis factor-α (TNFα), on antigen recognition when compared with WT1-TCR-engineered T cells still expressing their eTCR (eTCR+/+ WT1-TCR). CRISPR-Cas9 editing did not affect immunophenotypic characteristics or T cell activation and did not induce increased expression of inhibitory molecules. eTCR-/- WT1-TCR CD8+ CB-T cells showed effective migratory and killing capacity in cocultures with neoplastic cell lines and primary AML blasts, but did not show toxicity toward healthy cells. CONCLUSIONS: In summary, we show the feasibility of developing a potent CB-derived CD8+ T cell product targeting WT1, providing an option for post-transplant allogeneic immune cell therapy or as an off-the-shelf product, to prevent relapse and improve the clinical outcome of children with AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Child , CD8-Positive T-Lymphocytes , CRISPR-Cas Systems/genetics , Fetal Blood , Receptors, Antigen, T-Cell/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Cell Line, Tumor , Recurrence
9.
Pediatr Blood Cancer ; 71(7): e31031, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38679843

ABSTRACT

Invasive fungal disease (IFD) occurs less frequently during treatment for solid compared to hematological malignancies in children, and risk groups are poorly defined. Retrospective national multicenter cohort data (2004-2013) were analyzed to document prevalence, clinical characteristics, and microbiology of IFD. Amongst 2067 children treated for solid malignancy, IFD prevalence was 1.9% overall and 1.4% for proven/probable IFD. Of all IFD episodes, 42.5% occurred in patients with neuroblastoma (prevalence 7.0%). Candida species comprised 54.8% of implicated pathogens in proven/probable IFD. In children with solid tumors, IFD is rare, and predominantly caused by yeasts.Routine prophylaxis may not be warranted.


Subject(s)
Invasive Fungal Infections , Neoplasms , Humans , Child , Male , Female , Neoplasms/microbiology , Neoplasms/epidemiology , Retrospective Studies , Child, Preschool , Australia/epidemiology , Infant , Adolescent , Invasive Fungal Infections/epidemiology , Invasive Fungal Infections/etiology , Invasive Fungal Infections/prevention & control , Prevalence , Infant, Newborn
11.
Pharm Res ; 41(4): 711-720, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538970

ABSTRACT

BACKGROUND: PEGasparaginase is known to be a critical drug for treating pediatric acute lymphoblastic leukemia (ALL), however, there is insufficient evidence to determine the optimal dose for infants who are less than one year of age at diagnosis. This international study was conducted to identify the pharmacokinetics of PEGasparaginase in infants with newly diagnosed ALL and gather insight into the clearance and dosing of this population. METHODS: Infants with ALL who received treatment with PEGasparaginase were included in our population pharmacokinetic assessment employing non-linear mixed effects modelling (NONMEM). RESULTS: 68 infants with ALL, with a total of 388 asparaginase activity samples, were included. PEGasparaginase doses ranging from 400 to 3,663 IU/m2 were administered either intravenously or intramuscularly. A one-compartment model with time-dependent clearance, modeled using a transit model, provided the best fit to the data. Body weight was significantly correlated with clearance and volume of distribution. The final model estimated a half-life of 11.7 days just after administration, which decreased to 1.8 days 14 days after administration. Clearance was 19.5% lower during the post-induction treatment phase compared to induction. CONCLUSION: The pharmacokinetics of PEGasparaginase in infants diagnosed under one year of age with ALL is comparable to that of older children (1-18 years). We recommend a PEGasparaginase dosing at 1,500 IU/m2 for infants without dose adaptations according to age, and implementing therapeutic drug monitoring as standard practice.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Infant , Humans , Adolescent , Child, Preschool , Asparaginase/pharmacokinetics , Asparaginase/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Drug Monitoring
12.
Exp Hematol ; 133: 104212, 2024 May.
Article in English | MEDLINE | ID: mdl-38552942

ABSTRACT

Extensive research over the past 50 years has resulted in significant improvements in survival for patients diagnosed with leukemia. Despite this, a subgroup of patients harboring high-risk genetic alterations still suffer from poor outcomes. There is a desperate need for new treatments to improve survival, yet consistent failure exists in the translation of in vitro drug development to clinical application. Preclinical screening conventionally utilizes tumor cell monocultures to assess drug activity; however, emerging research has acknowledged the vital role of the tumor microenvironment in treatment resistance and disease relapse. Current co-culture drug screening methods frequently employ fibroblasts as the designated stromal cell component. Alternative stromal cell types that are known to contribute to chemoresistance are often absent in preclinical evaluations of drug efficacy. This review highlights mechanisms of chemoresistance by a range of different stromal constituents present in the bone marrow microenvironment. Utilizing an array of stromal cell types at the early stages of drug screening may enhance the translation of in vitro drug development to clinical use. Ultimately, we highlight the need to consider the bone marrow microenvironment in drug screening platforms for leukemia to develop superior therapies for the treatment of high-risk patients with poor prognostic outcomes.


Subject(s)
Leukemia , Tumor Microenvironment , Humans , Tumor Microenvironment/drug effects , Leukemia/pathology , Leukemia/drug therapy , Drug Screening Assays, Antitumor/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Animals , Bone Marrow/pathology , Bone Marrow/drug effects , Bone Marrow/metabolism , Stromal Cells/pathology , Stromal Cells/metabolism , Stromal Cells/drug effects , Coculture Techniques , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/pathology
13.
J Mol Med (Berl) ; 102(4): 507-519, 2024 04.
Article in English | MEDLINE | ID: mdl-38349407

ABSTRACT

Acute leukemia continues to be a major cause of death from disease worldwide and current chemotherapeutic agents are associated with significant morbidity in survivors. While better and safer treatments for acute leukemia are urgently needed, standard drug development pipelines are lengthy and drug repurposing therefore provides a promising approach. Our previous evaluation of FDA-approved drugs for their antileukemic activity identified disulfiram, used for the treatment of alcoholism, as a candidate hit compound. This study assessed the biological effects of disulfiram on leukemia cells and evaluated its potential as a treatment strategy. We found that disulfiram inhibits the viability of a diverse panel of acute lymphoblastic and myeloid leukemia cell lines (n = 16) and patient-derived xenograft cells from patients with poor outcome and treatment-resistant disease (n = 15). The drug induced oxidative stress and apoptosis in leukemia cells within hours of treatment and was able to potentiate the effects of daunorubicin, etoposide, topotecan, cytarabine, and mitoxantrone chemotherapy. Upon combining disulfiram with auranofin, a drug approved for the treatment of rheumatoid arthritis that was previously shown to exert antileukemic effects, strong and consistent synergy was observed across a diverse panel of acute leukemia cell lines, the mechanism of which was based on enhanced ROS induction. Acute leukemia cells were more sensitive to the cytotoxic activity of disulfiram than solid cancer cell lines and non-malignant cells. While disulfiram is currently under investigation in clinical trials for solid cancers, this study provides evidence for the potential of disulfiram for acute leukemia treatment. KEY MESSAGES: Disulfiram induces rapid apoptosis in leukemia cells by boosting oxidative stress. Disulfiram inhibits leukemia cell growth more potently than solid cancer cell growth. Disulfiram can enhance the antileukemic efficacy of chemotherapies. Disulfiram strongly synergises with auranofin in killing acute leukemia cells by ROS induction. We propose testing of disulfiram in clinical trial for patients with acute leukemia.


Subject(s)
Disulfiram , Leukemia, Myeloid, Acute , Humans , Disulfiram/pharmacology , Disulfiram/therapeutic use , Reactive Oxygen Species/metabolism , Auranofin/pharmacology , Auranofin/therapeutic use , Cell Line, Tumor , Leukemia, Myeloid, Acute/metabolism
15.
Cancers (Basel) ; 15(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37835427

ABSTRACT

B-cell acute lymphoblastic leukaemia (B-ALL) is characterised by diverse genomic alterations, the most frequent being gene fusions detected via transcriptomic analysis (mRNA-seq). Due to its hypervariable nature, gene fusions involving the Immunoglobulin Heavy Chain (IGH) locus can be difficult to detect with standard gene fusion calling algorithms and significant computational resources and analysis times are required. We aimed to optimize a gene fusion calling workflow to achieve best-case sensitivity for IGH gene fusion detection. Using Nextflow, we developed a simplified workflow containing the algorithms FusionCatcher, Arriba, and STAR-Fusion. We analysed samples from 35 patients harbouring IGH fusions (IGH::CRLF2 n = 17, IGH::DUX4 n = 15, IGH::EPOR n = 3) and assessed the detection rates for each caller, before optimizing the parameters to enhance sensitivity for IGH fusions. Initial results showed that FusionCatcher and Arriba outperformed STAR-Fusion (85-89% vs. 29% of IGH fusions reported). We found that extensive filtering in STAR-Fusion hindered IGH reporting. By adjusting specific filtering steps (e.g., read support, fusion fragments per million total reads), we achieved a 94% reporting rate for IGH fusions with STAR-Fusion. This analysis highlights the importance of filtering optimization for IGH gene fusion events, offering alternative workflows for difficult-to-detect high-risk B-ALL subtypes.

17.
Sci Transl Med ; 15(696): eabm1262, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37196067

ABSTRACT

High-risk childhood leukemia has a poor prognosis because of treatment failure and toxic side effects of therapy. Drug encapsulation into liposomal nanocarriers has shown clinical success at improving biodistribution and tolerability of chemotherapy. However, enhancements in drug efficacy have been limited because of a lack of selectivity of the liposomal formulations for the cancer cells. Here, we report on the generation of bispecific antibodies (BsAbs) with dual binding to a leukemic cell receptor, such as CD19, CD20, CD22, or CD38, and methoxy polyethylene glycol (PEG) for the targeted delivery of PEGylated liposomal drugs to leukemia cells. This liposome targeting system follows a "mix-and-match" principle where BsAbs were selected on the specific receptors expressed on leukemia cells. BsAbs improved the targeting and cytotoxic activity of a clinically approved and low-toxic PEGylated liposomal formulation of doxorubicin (Caelyx) toward leukemia cell lines and patient-derived samples that are immunophenotypically heterogeneous and representative of high-risk subtypes of childhood leukemia. BsAb-assisted improvements in leukemia cell targeting and cytotoxic potency of Caelyx correlated with receptor expression and were minimally detrimental in vitro and in vivo toward expansion and functionality of normal peripheral blood mononuclear cells and hematopoietic progenitors. Targeted delivery of Caelyx using BsAbs further enhanced leukemia suppression while reducing drug accumulation in the heart and kidneys and extended overall survival in patient-derived xenograft models of high-risk childhood leukemia. Our methodology using BsAbs therefore represents an attractive targeting platform to potentiate the therapeutic efficacy and safety of liposomal drugs for improved treatment of high-risk leukemia.


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents , Leukemia , Humans , Antibodies, Bispecific/therapeutic use , Tissue Distribution , Leukocytes, Mononuclear , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Antineoplastic Agents/therapeutic use , Polyethylene Glycols , Liposomes , Leukemia/drug therapy
18.
N Engl J Med ; 388(17): 1572-1581, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37099340

ABSTRACT

BACKGROUND: KMT2A-rearranged acute lymphoblastic leukemia (ALL) in infants is an aggressive disease with 3-year event-free survival below 40%. Most relapses occur during treatment, with two thirds occurring within 1 year and 90% within 2 years after diagnosis. Outcomes have not improved in recent decades despite intensification of chemotherapy. METHODS: We studied the safety and efficacy of blinatumomab, a bispecific T-cell engager molecule targeting CD19, in infants with KMT2A-rearranged ALL. Thirty patients younger than 1 year of age with newly diagnosed KMT2A-rearranged ALL were given the chemotherapy used in the Interfant-06 trial with the addition of one postinduction course of blinatumomab (15 µg per square meter of body-surface area per day; 28-day continuous infusion). The primary end point was clinically relevant toxic effects, defined as any toxic effect that was possibly or definitely attributable to blinatumomab and resulted in permanent discontinuation of blinatumomab or death. Minimal residual disease (MRD) was measured by polymerase chain reaction. Data on adverse events were collected. Outcome data were compared with historical control data from the Interfant-06 trial. RESULTS: The median follow-up was 26.3 months (range, 3.9 to 48.2). All 30 patients received the full course of blinatumomab. No toxic effects meeting the definition of the primary end point occurred. Ten serious adverse events were reported (fever [4 events], infection [4], hypertension [1], and vomiting [1]). The toxic-effects profile was consistent with that reported in older patients. A total of 28 patients (93%) either were MRD-negative (16 patients) or had low levels of MRD (<5×10-4 [i.e., <5 leukemic cells per 10,000 normal cells], 12 patients) after the blinatumomab infusion. All the patients who continued chemotherapy became MRD-negative during further treatment. Two-year disease-free survival was 81.6% in our study (95% confidence interval [CI], 60.8 to 92.0), as compared with 49.4% (95% CI, 42.5 to 56.0) in the Interfant-06 trial; the corresponding values for overall survival were 93.3% (95% CI, 75.9 to 98.3) and 65.8% (95% CI, 58.9 to 71.8). CONCLUSIONS: Blinatumomab added to Interfant-06 chemotherapy appeared to be safe and had a high level of efficacy in infants with newly diagnosed KMT2A-rearranged ALL as compared with historical controls from the Interfant-06 trial. (Funded by the Princess Máxima Center Foundation and others; EudraCT number, 2016-004674-17.).


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Infant , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/adverse effects , Antibodies, Bispecific/therapeutic use , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Disease-Free Survival , Neoplasm, Residual/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , T-Lymphocytes/immunology , Treatment Outcome
19.
Cancers (Basel) ; 15(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36765607

ABSTRACT

T-cell lymphoblastic lymphoma (T-LBL) is a rare and aggressive lymphatic cancer, often diagnosed at a young age. Patients are treated with intensive chemotherapy, potentially followed by a hematopoietic stem cell transplantation. Although prognosis of T-LBL has improved with intensified treatment protocols, they are associated with side effects and 10-20% of patients still die from relapsed or refractory disease. Given this, the search toward less toxic anti-lymphoma therapies is ongoing. Here, we targeted the recently described DNA hypermethylated profile in T-LBL with the DNA hypomethylating agent decitabine. We evaluated the anti-lymphoma properties and downstream effects of decitabine, using patient derived xenograft (PDX) models. Decitabine treatment resulted in prolonged lymphoma-free survival in all T-LBL PDX models, which was associated with downregulation of the oncogenic MYC pathway. However, some PDX models showed more benefit of decitabine treatment compared to others. In more sensitive models, differentially methylated CpG regions resulted in more differentially expressed genes in open chromatin regions. This resulted in stronger downregulation of cell cycle genes and upregulation of immune response activating transcripts. Finally, we suggest a gene signature for high decitabine sensitivity in T-LBL. Altogether, we here delivered pre-clinical proof of the potential use of decitabine as a new therapeutic agent in T-LBL.

20.
Front Cell Dev Biol ; 11: 1005494, 2023.
Article in English | MEDLINE | ID: mdl-36743421

ABSTRACT

Components of the bone marrow microenvironment (BMM) have been shown to mediate the way in which leukemia develops, progresses and responds to treatment. Increasing evidence shows that leukemic cells hijack the BMM, altering its functioning and establishing leukemia-supportive interactions with stromal and immune cells. While previous work has highlighted functional defects in the mesenchymal stem cell (MSC) population from the BMM of acute leukemias, thorough characterization and molecular profiling of MSCs in pre-B cell acute lymphoblastic leukemia (B-ALL), the most common cancer in children, has not been conducted. Here, we investigated the cellular and transcriptome profiles of MSCs isolated from the BMM of an immunocompetent BCR-ABL1+ model of B-ALL. Leukemia-associated MSCs exhibited reduced self-renewal capacity in vitro and significant changes in numerous molecular signatures, including upregulation of inflammatory signaling pathways. Additionally, we found downregulation of genes involved in extracellular matrix organization and osteoblastogenesis in leukemia-associated MSCs. This study provides cellular and molecular insights into the role of MSCs during B-ALL progression.

SELECTION OF CITATIONS
SEARCH DETAIL