Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Protein Sci ; 33(7): e5076, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39196703

ABSTRACT

Antimicrobial resistance is a critical public health concern, necessitating the exploration of alternative treatments. While antimicrobial peptides (AMPs) show promise, assessing their toxicity using traditional wet lab methods is both time-consuming and costly. We introduce tAMPer, a novel multi-modal deep learning model designed to predict peptide toxicity by integrating the underlying amino acid sequence composition and the three-dimensional structure of peptides. tAMPer adopts a graph-based representation for peptides, encoding ColabFold-predicted structures, where nodes represent amino acids and edges represent spatial interactions. Structural features are extracted using graph neural networks, and recurrent neural networks capture sequential dependencies. tAMPer's performance was assessed on a publicly available protein toxicity benchmark and an AMP hemolysis data we generated. On the latter, tAMPer achieves an F1-score of 68.7%, outperforming the second-best method by 23.4%. On the protein benchmark, tAMPer exhibited an improvement of over 3.0% in the F1-score compared to current state-of-the-art methods. We anticipate tAMPer to accelerate AMP discovery and development by reducing the reliance on laborious toxicity screening experiments.


Subject(s)
Deep Learning , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/toxicity , Neural Networks, Computer , Hemolysis/drug effects
2.
Protein Sci ; 33(8): e5088, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38988311

ABSTRACT

Antibiotic resistance is recognized as an imminent and growing global health threat. New antimicrobial drugs are urgently needed due to the decreasing effectiveness of conventional small-molecule antibiotics. Antimicrobial peptides (AMPs), a class of host defense peptides, are emerging as promising candidates to address this need. The potential sequence space of amino acids is combinatorially vast, making it possible to extend the current arsenal of antimicrobial agents with a practically infinite number of new peptide-based candidates. However, mining naturally occurring AMPs, whether directly by wet lab screening methods or aided by bioinformatics prediction tools, has its theoretical limit regarding the number of samples or genomic/transcriptomic resources researchers have access to. Further, manually designing novel synthetic AMPs requires prior field knowledge, restricting its throughput. In silico sequence generation methods are gaining interest as a high-throughput solution to the problem. Here, we introduce AMPd-Up, a recurrent neural network based tool for de novo AMP design, and demonstrate its utility over existing methods. Validation of candidates designed by AMPd-Up through antimicrobial susceptibility testing revealed that 40 of the 58 generated sequences possessed antimicrobial activity against Escherichia coli and/or Staphylococcus aureus. These results illustrate that AMPd-Up can be used to design novel synthetic AMPs with potent activities.


Subject(s)
Antimicrobial Peptides , Neural Networks, Computer , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemical synthesis , Drug Design , Escherichia coli/drug effects , Escherichia coli/genetics , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis
3.
Antibiotics (Basel) ; 11(12)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36551368

ABSTRACT

Antimicrobial peptides (AMPs) are a diverse class of short, often cationic biological molecules that present promising opportunities in the development of new therapeutics to combat antimicrobial resistance. Newly developed in silico methods offer the ability to rapidly discover numerous novel AMPs with a variety of physiochemical properties. Herein, using the rAMPage AMP discovery pipeline, we bioinformatically identified 51 AMP candidates from amphibia and insect RNA-seq data and present their in-depth characterization. The studied AMPs demonstrate activity against a panel of bacterial pathogens and have undetected or low toxicity to red blood cells and human cultured cells. Amino acid sequence analysis revealed that 30 of these bioactive peptides belong to either the Brevinin-1, Brevinin-2, Nigrocin-2, or Apidaecin AMP families. Prediction of three-dimensional structures using ColabFold indicated an association between peptides predicted to adopt a helical structure and broad-spectrum antibacterial activity against the Gram-negative and Gram-positive species tested in our panel. These findings highlight the utility of associating the diverse sequences of novel AMPs with their estimated peptide structures in categorizing AMPs and predicting their antimicrobial activity.

SELECTION OF CITATIONS
SEARCH DETAIL