Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Immunol ; 393-394: 104782, 2023.
Article in English | MEDLINE | ID: mdl-37931572

ABSTRACT

Type I interferons (IFN), especially human IFN alpha (IFNα), have been utilized for antitumor therapy for decades. Human interferon beta (IFNß) is rarely used for cancer treatment, despite advantages over IFNα in biological activities such as tumor growth inhibition and dendritic cell (DC) activation. The utilization of pegylated human IFNß (PEG-IFNß), as monotherapy or in combination with immune checkpoint inhibitors (ICIs) was evaluated in this study through in vivo efficacy studies in syngeneic mouse melanoma, non-small cell lung cancer (NSCLC), and colon adenocarcinoma (COAD) models resistant to immune checkpoint inhibitors (ICIs). In vitro comparative study of PEG-IFNß and pegylated IFNα-2b was performed in terms of tumor growth inhibition against human melanoma, NSCLC and COAD cell lines and activation of human monocyte-derived DCs (MoDCs). Our data demonstrate that the in vivo antitumor effects of PEG-IFNß are partially attributable to tumor growth-inhibitory effects and DC-activating activities, superior to pegylated IFNα-2b. Our findings suggest that utilizing PEG-IFNß as an antitumor therapy can enhance the therapeutic effect of ICIs in ICI-resistant tumors by directly inhibiting tumor growth and induction of DC maturation.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Colonic Neoplasms , Lung Neoplasms , Melanoma , Animals , Mice , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Adenocarcinoma/drug therapy , Lung Neoplasms/pathology , Colonic Neoplasms/drug therapy , Interferon-alpha/pharmacology , Interferon alpha-2/therapeutic use , Melanoma/drug therapy , Interferon-beta/metabolism , Interferon-beta/therapeutic use , Polyethylene Glycols/therapeutic use , Dendritic Cells/metabolism
2.
Vaccines (Basel) ; 10(5)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35632456

ABSTRACT

With the emergence and rapid spread of new pandemic variants, especially variants of concern (VOCs), the development of next-generation vaccines with broad-spectrum neutralizing activities is of great importance. In this study, SCTV01C, a clinical stage bivalent vaccine based on trimeric spike extracellular domain (S-ECD) of SARS-CoV-2 variants Alpha (B.1.1.7) and Beta (B.1.351) with a squalene-based oil-in-water adjuvant was evaluated in comparison to its two corresponding (Alpha and Beta) monovalent vaccines in mouse immunogenicity studies. The two monovalent vaccines induced potent neutralizing antibody responses against the antigen-matched variants, but drastic reductions in neutralizing antibody titers against antigen-mismatched variants were observed. In comparison, the bivalent vaccine SCTV01C induced relatively higher and broad-spectrum cross-neutralizing activities against various SARS-CoV-2 variants, including the D614G variant, VOCs (B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.1.529), variants of interest (VOIs) (C.37, B.1.621), variants under monitoring (VUMs) (B.1.526, B.1.617.1, B.1.429, C.36.3) and other variants (B.1.618, 20I/484Q). All three vaccines elicited potent Th1-biased T-cell immune responses. These results provide direct evidence that variant-based multivalent vaccines could play important roles in addressing the critical issue of reduced protective efficacy against the existing and emerging SARS-CoV-2 variants.

SELECTION OF CITATIONS
SEARCH DETAIL