Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 130(3): 034002, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36763389

ABSTRACT

Convection in radial force fields is a fundamental process behind weather on Earth and the Sun, as well as magnetic dynamo action in both. Until now, benchtop experiments have been unable to study convection in radial force fields due to the inability to generate radial forces of sufficient strength. Recently, it has been appreciated that sound, when averaged over many cycles, exerts a force on density gradients in the gas it travels through. The acoustic radiation pressure on thermal gradients draws cooler gas to regions with large time-averaged acoustic velocity and can be modeled as an effective acoustic gravity. We have constructed a system which generates a high amplitude, spherically symmetric acoustic wave in a rotating spherical bulb containing weakly ionized sulfur gas. Without sound, the gas stratifies itself into an initial state with the warmest gas near the center of the bulb, and the coolest gas near the bulb surface. When the sound is initiated, the acoustic radiation pressure is not balanced and a convective instability is triggered. With high speed videography, we observe the initial shape and growth rate of the most unstable mode at various acoustic amplitudes. Acoustic and rotational forces both contribute to the detailed mode shape, which changes qualitatively at low amplitudes where acoustic forces no longer surpass rotational ones everywhere in the bulb.

2.
Pharm Res ; 37(3): 51, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32043171

ABSTRACT

PURPOSE: Bolus injection of fluid into subcutaneous tissue results in accumulation of fluid at the injection site. The fluid does not form a pool. Rather, the injection pressure forces the interstitial matrix to expand to accommodate the excess fluid in its volume, and the fluid becomes bound similar to that in a hydrogel. We seek to understand the properties and dynamics of externally tumesced (swollen) subcutaneous tissue as a first step in assessing whether tumescent antibiotic injections into wounds may provide a novel method of treatment. METHODS: Subcutaneous injections of saline are performed in live and dead pigs and the physical properties (volume, expansion ratio, residence time, apparent diffusion constant) of the resulting fluid deposits are observed with diffusion-weighted magnetic resonance imaging, computed tomography, and 3D scanning. RESULTS: Subcutaneous tissue can expand to a few times its initial volume to accommodate the injected fluid, which is dispersed thoroughly throughout the tumescent volume. The fluid spreads to peripheral unexpanded regions over the course of a few minutes, after which it remains in place for several hours. Eventually the circulation absorbs the excess fluid and the tissue returns to its original state. CONCLUSIONS: Given the evidence for dense fluid dispersal and several-hour residence time, a procedure is proposed whereby tumescent antibiotic injections are used to treat drug-resistant skin infections and chronic wounds that extend into the subcutaneous tissue. The procedure has the potential to effectively treat otherwise untreatable wounds by keeping drug concentrations above minimum inhibitory levels for extended lengths of time.


Subject(s)
Drug Delivery Systems/methods , Injections, Subcutaneous/methods , Wounds and Injuries/drug therapy , Animals , Anti-Bacterial Agents/therapeutic use , Subcutaneous Tissue , Swine , Wound Infection/drug therapy
3.
Opt Lett ; 44(23): 5832-5835, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31774791

ABSTRACT

A combination of ultrafast emission and transmission spectroscopy is presented that provides a model-independent temperature measurement and tracking of the expansion dynamics for a dense, strongly coupled plasma. For femtosecond laser breakdown of hydrogen gas at 10 bar, we observe a 30,000 K two-component plasma for hundreds of picoseconds where both electrons and protons have a strong coupling parameter value of $\Gamma \sim{0.5}$Γ∼0.5. Furthermore, the plasma's degree of ionization (45%) results in a condition where the Debye screening length (6 Å) is less than the interatomic spacing (13 Å). Plasma formation occurs under an isochoric initial condition, which simplifies hydrodynamic modeling of the plasma channel expansion. The channel radius is found to accelerate at a constant rate until the front is moving with the speed of sound. Comparing hydrogen and deuterium for the same breakdown conditions grants unique insight into the hydrodynamics of strongly coupled plasma due to their nearly identical electronic structure yet large mass difference. The ultimate goal of these experiments is to access a plasma regime where continuum mechanics become nonlocal, as compared with the hydrodynamic motion described by the Navier-Stokes equations.

4.
Phys Rev E ; 100(3-1): 033204, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31639970

ABSTRACT

We present a method of sound amplification and self-oscillation in high pressure partially ionized gas. Continuous microwaves incident on partially ionized gas may sustain and amplify an acoustic field if increased ionization during the sound field's adiabatic compression enhances rf power absorption. Amplifying sound in this way enables the generation of high amplitude sound in a cavity containing partially ionized gas without mechanical driving or precise knowledge of its resonance frequency. This method of amplification may open opportunities within thermoacoustics such as using three-dimensional geometries and volumetric gain mechanisms.

5.
Opt Lett ; 44(13): 3258-3261, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31259935

ABSTRACT

We evaluate spark micro-discharges as the working element of laser switches that can operate on sub-nanosecond timescales, function over a broad range of wavelengths, and handle high laser power. Sparks were generated in room temperature argon at 11-51 bar and xenon at 3-11.6 bar. A continuous 405 nm wavelength laser light was focused through the spark gap, and its transmission was recorded by a high-speed photodiode. We demonstrate that the transition to opacity at the higher pressures is faster than our detection circuit's 90%-10% fall time of 400 ps, indicating that the true fall time is 100 ps or shorter. The challenges to be overcome to improve device reliability are identified.

6.
J Acoust Soc Am ; 144(5): 2847, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30522309

ABSTRACT

Acoustics is used to probe the temperature profile within a sulfur plasma lamp. A spherically symmetric temperature profile is assumed that drops with the square of the radius, consistent with a constant volumetric heating model. Acoustic resonance frequencies are calculated exactly in the case of an ideal gas. Experimental measurement of a few resonant frequencies allows determination of the temperature profile curvature. This technique can be viewed as an extension of ultrasonic resonant spectroscopy to systems that are highly non-uniform due to off-equilibrium energy flow.

7.
J Surg Res ; 224: 156-159, 2018 04.
Article in English | MEDLINE | ID: mdl-29506833

ABSTRACT

BACKGROUND: Surgical site infections (SSIs) pose a significant health and financial burden. A key aspect of appropriate prophylaxis is the administration of antibiotics intravenously (IV). However, subcutaneous administration of antibiotics is not well described in the literature. During surgery, we hypothesize that subcutaneous injection may provide better protection against SSIs. To better understand the kinetics after subcutaneous injection, we describe the serum concentrations of cefazolin in a porcine model. MATERIALS AND METHODS: Juvenile mini-Yucatan pigs were administered 20 mL of 25 mg/kg cefazolin subcutaneously, and serial blood samples were taken for 3 h. Blood samples were analyzed for cefazolin concentration using chromatography. Pharmacokinetic data were calculated based on the blood serum concentrations. RESULTS: Maximum serum concentrations of cefazolin were achieved 42.6 ± 2.0 min after the time of injection and were found to be 18.8 ± 7.4 µg/mL. The elimination rate constant was 0.0033 ± 0.0016 min-1 and the half-life was 266 ± 149 min. The area under the curve was 4940 ± 1030 µg × min/mL. The relative bioavailability of subcutaneous injection was 95% +5%/-20%. CONCLUSIONS: Subcutaneous administration of cefazolin achieves a significantly lower maximum serum concentration than IV injection. As a result, higher doses of antibiotic can be injected locally without incurring systemic toxicity. Subcutaneous administration will therefore result in higher concentrations of antibiotic for a longer time at the incision site compared with standard IV administration. This strategy of antibiotic delivery may be more effective in preventing SSIs. Further studies are needed to detail the exact effect of subcutaneous antibiotic injection on SSI rates.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Cefazolin/administration & dosage , Surgical Wound Infection/prevention & control , Animals , Cefazolin/pharmacokinetics , Disease Models, Animal , Female , Injections, Subcutaneous , Swine
8.
Ultrasound Med Biol ; 44(1): 177-186, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29096999

ABSTRACT

We search for cavitation in tumescent subcutaneous tissue of a live pig under application of pulsed, 1-MHz ultrasound at 8 W cm-2 spatial peak and pulse-averaged intensity. We find no evidence of broadband acoustic emission indicative of inertial cavitation. These acoustic parameters are representative of those used in external-ultrasound-assisted lipoplasty and in physical therapy and our null result brings into question the role of cavitation in those applications. A comparison of broadband acoustic emission from a suspension of ultrasound contrast agent in bulk water with a suspension injected subcutaneously indicates that the interstitial matrix suppresses cavitation and provides an additional mechanism behind the apparent lack of in-vivo cavitation to supplement the absence of nuclei explanation offered in the literature. We also find a short-lived cavitation signal in normal, non-tumesced tissue that disappears after the first pulse, consistent with cavitation nuclei depletion in vivo.


Subject(s)
Subcutaneous Tissue , Ultrasonic Therapy/methods , Animals , Models, Animal , Swine
9.
Rev Sci Instrum ; 87(5): 055003, 2016 05.
Article in English | MEDLINE | ID: mdl-27250462

ABSTRACT

We have constructed an actuator/encoder whose generated displacement is controlled through the resonance frequency of a microwave cavity. A compact, 10-µm-range, digitally controlled actuator executing frequency-coded displacement with picometer resolution is described. We consider this approach particularly suitable for metrologic-precision scanning probe microscopy.

SELECTION OF CITATIONS
SEARCH DETAIL