Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 315
Filter
1.
Atherosclerosis ; 397: 118567, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39243663

ABSTRACT

BACKGROUND AND AIMS: Mast cell-derived heparin proteoglycans (HEP-PG) can be mimicked by bioconjugates carrying antithrombotic and anti-inflammatory properties. The dual antiplatelet and anticoagulant (APAC) construct administered, either locally or intravenously (i.v.), targets activated endothelium, its adhesion molecules, and subendothelial matrix proteins, all relevant to atherogenesis. We hypothesized that APAC influences cellular interactions in atherosclerotic lesion development and studied APAC treatment during the initiation and progression of experimental atherosclerosis. METHODS: Male western-type diet-fed Apoe-/- mice were equipped with perivascular carotid artery collars to induce local atherosclerosis. In this model, mRNA expression of adhesion molecules including ICAM-1, VCAM-1, P-Selectin, and Platelet Factor 4 (PF4) are upregulated upon lesion development. From day 1 (prevention) or from 2.5 weeks after lesion initiation (treatment), mice were administered 0.2 mg/kg APAC i.v. or control vehicle three times weekly for 2.5 weeks. At week 5 after collar placement, mice were sacrificed, and lesion morphology was microscopically assessed. RESULTS: APAC treatment did not affect body weight or plasma total cholesterol levels during the experiments. In the prevention setting, APAC reduced carotid artery plaque size and volume by over 50 %, aligning with decreased plaque macrophage area and collagen content. During the treatment setting, APAC reduced macrophage accumulation and necrotic core content, and improved markers of plaque stability. CONCLUSIONS: APAC effectively reduced early atherosclerotic lesion development and improved markers of plaque inflammation in advanced atherosclerosis. Thus, APAC may have potential to alleviate the progression of atherosclerosis.

2.
Ann Med ; 56(1): 2390166, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39152892

ABSTRACT

There is growing concern that the severe respiratory disease in birds (avian influenza or 'bird flu') caused by the H5N1 influenza virus, might potentially spread more widely to humans and cause a pandemic. Here we discuss clinical issues related to human infections by the highly pathogenic H5N1 subtype of the avian influenza A virus and make a clinical comparison with recent information obtained from studies of SARS-CoV-2 infection. Firstly, we consider the potential increase in cardiovascular events in humans infected with the H5N1 virus. Like SARS-CoV-2 infection, H5N1 infection may result in endothelial dysfunction and the associated procoagulant and prothrombotic state, and via this mechanism, the infection can potentially increase cardiovascular morbidity, especially in vulnerable individuals with pre-existing cardiovascular disease. Secondly, we discuss the potential beneficial role of statin use, both in the prophylaxis and the treatment of individuals with influenza A(H5N1), as was found favorable for the treatment of COVID-19 caused by SARS-CoV-2 infection.


There is a concern that avian influenza caused by the highly pathogenic avian influenza A(H5N1) virus might potentially spread more widely to humans and result in a pandemicH5N1 infection may result in endothelial dysfunction and via this mechanism, it can potentially increase cardiovascular morbidity and mortality as has occurred with SARS-CoV-2 infection.There is a potential advantage of the use of statins to reduce cardiovascular morbidity and mortality in patients with avian influenza A(H5N1), as has been found in patients suffering from COVID-19.


Subject(s)
COVID-19 , Cardiovascular Diseases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Influenza A Virus, H5N1 Subtype , Influenza, Human , Humans , Influenza A Virus, H5N1 Subtype/drug effects , Influenza, Human/prevention & control , Influenza, Human/epidemiology , COVID-19/prevention & control , COVID-19/complications , COVID-19/epidemiology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/epidemiology , Animals , SARS-CoV-2 , Influenza in Birds/epidemiology , Birds , Pandemics , COVID-19 Drug Treatment
6.
Front Cardiovasc Med ; 10: 1130162, 2023.
Article in English | MEDLINE | ID: mdl-37293282

ABSTRACT

Introduction: Lipoprotein(a) (Lp(a)) is an LDL-like particle with an additional apolipoprotein (apo)(a) covalently attached. Elevated levels of circulating Lp(a) are a risk factor for atherosclerosis. A proinflammatory role for Lp(a) has been proposed, but its molecular details are incompletely defined. Methods and results: To explore the effect of Lp(a) on human macrophages we performed RNA sequencing on THP-1 macrophages treated with Lp(a) or recombinant apo(a), which showed that especially Lp(a) induces potent inflammatory responses. Thus, we stimulated THP-1 macrophages with serum containing various Lp(a) levels to investigate their correlations with cytokines highlighted by the RNAseq, showing significant correlations with caspase-1 activity and secretion of IL-1ß and IL-18. We further isolated both Lp(a) and LDL particles from three donors and then compared their atheroinflammatory potentials together with recombinant apo(a) in primary and THP-1 derived macrophages. Compared with LDL, Lp(a) induced a robust and dose-dependent caspase-1 activation and release of IL-1ß and IL-18 in both macrophage types. Recombinant apo(a) strongly induced caspase-1 activation and IL-1ß release in THP-1 macrophages but yielded weak responses in primary macrophages. Structural analysis of these particles revealed that the Lp(a) proteome was enriched in proteins associated with complement activation and coagulation, and its lipidome was relatively deficient in polyunsaturated fatty acids and had a high n-6/n-3 ratio promoting inflammation. Discussion: Our data show that Lp(a) particles induce the expression of inflammatory genes, and Lp(a) and to a lesser extent apo(a) induce caspase-1 activation and IL-1 signaling. Major differences in the molecular profiles between Lp(a) and LDL contribute to Lp(a) being more atheroinflammatory.

7.
Atheroscler Plus ; 53: 1-5, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37293388

ABSTRACT

In this short narrative review, we aim at defining the pathophysiological role endothelial dysfunction in the observed COVID-19-associated rise in risk of cardiovascular disease. Variants of the SARS-CoV-2 virus have caused several epidemic waves of COVID-19, and the emergence and rapid spread of new variants and subvariants are likely. Based on a large cohort study, the incidence rate of SARS-CoV-2 reinfection is about 0.66 per 10 000 person-weeks. Both the first infection and reinfection with SARS-CoV-2 increase cardiac event risk, particularly in vulnerable patients with cardiovascular risk factors and the accompanying systemic endothelial dysfunction. By worsening pre-existing endothelial dysfunction, both the first infection and reinfection with ensuing COVID-19 may turn the endothelium procoagulative and prothrombotic, and ultimately lead to local thrombus formation. When occurring in an epicardial coronary artery, the risk of an acute coronary syndrome increases, and when occurring in intramyocardial microvessels, scattered myocardial injuries will ensue, both predisposing the COVID-19 patients to adverse cardiovascular outcomes. In conclusion, considering weakened protection against the cardiovascular risk-enhancing reinfections with emerging new subvariants of SARS-CoV-2, treatment of COVID-19 patients with statins during the illness and thereafter is recommended, partly because the statins tend to reduce endothelial dysfunction.

9.
Semin Cancer Biol ; 93: 36-51, 2023 08.
Article in English | MEDLINE | ID: mdl-37156344

ABSTRACT

Obesity has been closely related to cancer progression, recurrence, metastasis, and treatment resistance. We aim to review recent progress in the knowledge on the obese macroenvironment and the generated adipose tumor microenvironment (TME) inducing lipid metabolic dysregulation and their influence on carcinogenic processes. Visceral white adipose tissue expansion during obesity exerts systemic or macroenvironmental effects on tumor initiation, growth, and invasion by promoting inflammation, hyperinsulinemia, growth-factor release, and dyslipidemia. The dynamic relationship between cancer and stromal cells of the obese adipose TME is critical for cancer cell survival and proliferation as well. Experimental evidence shows that secreted paracrine signals from cancer cells can induce lipolysis in cancer-associated adipocytes, causing them to release free fatty acids and acquire a fibroblast-like phenotype. Such adipocyte delipidation and phenotypic change is accompanied by an increased secretion of cytokines by cancer-associated adipocytes and tumor-associated macrophages in the TME. Mechanistically, the availability of adipose TME free fatty acids and tumorigenic cytokines concomitant with the activation of angiogenic processes creates an environment that favors a shift in the cancer cells toward an aggressive phenotype associated with increased invasiveness. We conclude that restoring the aberrant metabolic alterations in the host macroenvironment and in adipose TME of obese subjects would be a therapeutic option to prevent cancer development. Several dietary, lipid-based, and oral antidiabetic pharmacological therapies could potentially prevent tumorigenic processes associated with the dysregulated lipid metabolism closely linked to obesity.


Subject(s)
Lipid Metabolism , Neoplasms , Humans , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Nonesterified/pharmacology , Adipocytes/metabolism , Obesity/complications , Cytokines/metabolism , Neoplasms/metabolism , Carcinogenesis/metabolism , Tumor Microenvironment
10.
Ann Med ; 55(1): 2199218, 2023 12.
Article in English | MEDLINE | ID: mdl-37068045

ABSTRACT

Patients with hypercholesterolemia often have coronary microvascular dysfunction (CMD). Viral infections, such as the SARS-CoV-2 infection, may also result in CMD. Three non-randomized studies have shown significant beneficial effects of statins on CMD in non-infected patients. Similarly, in SARS-CoV-2 - infected patients one beneficial mechanism of action of statins may be the amelioration of endothelial dysfunction, which is a major driver of CMD. Apart from statins, lipoprotein apheresis and PCSK9 inhibitors can also improve or even reverse CMD. The potential reversal of CMD by using effective cholesterol-lowering medications during and after COVID-19 infection, especially in hypercholesterolemic COVID-19 patients, is important.KEY MESSAGESCoronary microvascular dysfunction (CMD) is common in patients hospitalized with SARS-CoV-2 infectionThree nonrandomized studies in non-infected patients are showing the beneficial effects of statin treatment on CMDEffective cholesterol-lowering medication during and after SARS-CoV-2 infection, especially in hypercholesterolemic COVID-19 patients, is of great significance.


Subject(s)
Anticholesteremic Agents , COVID-19 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Proprotein Convertase 9 , COVID-19/complications , Cholesterol, LDL , Microcirculation , SARS-CoV-2 , Anticholesteremic Agents/therapeutic use , Anticholesteremic Agents/pharmacology , Cholesterol
11.
Curr Opin Lipidol ; 34(3): 119-125, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36924390

ABSTRACT

PURPOSE OF REVIEW: Patients with heterozygous familial hypercholesterolemia (HeFH) are at increased risk for COVID-19 cardiovascular complications in the acute phase of the infection. Elevated levels of LDL-C and often lipoprotein(a) are present from birth and lead to endothelial dysfunction, which is aggravated by a direct viral attack of the endothelial cells and their exposure to the toxic levels of circulating proinflammatory and prothrombotic mediators during the hyperinflammatory reaction typical of COVID-19. RECENT FINDINGS: Evidence to date shows the benefit of lipid-lowering therapy in patients with COVID-19. In HeFH patients who are at much higher cardiovascular risk, the focus should, therefore, be on the effective lowering of LDL-C levels, the root cause of the greater cardiovascular vulnerability to COVID-19 infection in these patients. The ongoing use of statins and other lipid-lowering therapies should be encouraged during the ongoing COVID pandemic to mitigate the risk of cardiovascular complications from COVID-19, particularly in HeFH patients. SUMMARY: Epidemiologic registry data show that the incidence of myocardial infarction is increased in SARS-CoV-2-infected HeFH patients. There is a need to study whether the risk for acute cardiovascular events is increased in the long-term and if there are changes in lipid metabolism after SARS-CoV infection(s) in patients with HeFH.


Subject(s)
COVID-19 , Hypercholesterolemia , Hyperlipoproteinemia Type II , Humans , Cholesterol, LDL , Endothelial Cells , COVID-19/complications , SARS-CoV-2 , Hyperlipoproteinemia Type II/complications , Hyperlipoproteinemia Type II/drug therapy , Hyperlipoproteinemia Type II/epidemiology , Hypercholesterolemia/complications
13.
Disaster Med Public Health Prep ; 17: e280, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36226400

ABSTRACT

Infectious diseases and war are maleficent comrades. This reality applies equally well to the war in Ukraine and the current coronavirus disease 2019 (COVID-19) pandemic. Europe is facing a huge refugee crisis and potentially the conflict could worsen the COVID-19 pandemic. Initially, 2 major countries of concern are Poland, which has taken the majority of refugees, and Moldova, which has taken a very large number of refugees on a per capita basis. However, the concern extends to the rest of Europe because of the mobility of refugees beyond the first country they enter. Vaccinating, infection control, and boosting refugees should be a priority. However, complete prevention of COVID-19 is very complex because of other issues related to the success of prevention.


Subject(s)
COVID-19 , Communicable Diseases , Refugees , Humans , COVID-19/epidemiology , Ukraine/epidemiology , Pandemics/prevention & control , Europe
15.
Acta Neuropathol Commun ; 10(1): 130, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064651

ABSTRACT

Saccular intracranial aneurysm (sIA) rupture leads to subarachnoid haemorrhage and is preceded by chronic inflammation and atherosclerotic changes of the sIA wall. Increased lymphangiogenesis has been detected in atherosclerotic extracranial arteries and in abdominal aortic aneurysms, but the presence of lymphatic vessels in sIAs has remained unexplored. Here we studied the presence of lymphatic vessels in 36 intraoperatively resected sIAs (16 unruptured and 20 ruptured), using immunohistochemical and immunofluorescence stainings for lymphatic endothelial cell (LEC) markers. Of these LEC-markers, both extracellular and intracellular LYVE-1-, podoplanin-, VEGFR-3-, and Prox1-positive stainings were detected in 83%, 94%, 100%, and 72% of the 36 sIA walls, respectively. Lymphatic vessels were identified as ring-shaped structures positive for one or more of the LEC markers. Of the sIAs, 78% contained lymphatic vessels positive for at least one LEC marker. The presence of LECs and lymphatic vessels were associated with the number of CD68+ and CD163+ cells in the sIA walls, and with the expression of inflammation indicators such as serum amyloid A, myeloperoxidase, and cyclo-oxygenase 2, with the presence of a thrombus, and with the sIA wall rupture. Large areas of VEGFR-3 and α-smooth muscle actin (αSMA) double-positive cells were detected in medial parts of the sIA walls. Also, a few podoplanin and αSMA double-positive cells were discovered. In addition, LYVE-1 and CD68 double-positive cells were detected in the sIA walls and in the thrombus revealing that certain CD68+ macrophages are capable of expressing LEC markers. This study demonstrates for the first time the presence of lymphatic vessels in human sIA walls. Further studies are needed to understand the role of lymphatic vessels in the pathogenesis of sIA.


Subject(s)
Aneurysm, Ruptured , Intracranial Aneurysm , Lymphatic Vessels , Thrombosis , Aneurysm, Ruptured/complications , Aneurysm, Ruptured/metabolism , Aneurysm, Ruptured/pathology , Biomarkers , Humans , Inflammation/complications , Intracranial Aneurysm/metabolism , Lymphatic Vessels/metabolism , Thrombosis/complications , Vascular Endothelial Growth Factor Receptor-3
17.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077457

ABSTRACT

Hyperactive poly(ADP-ribose) polymerases (PARP) promote ischemic heart failure (IHF) after myocardial infarction (MI). However, the role of tankyrases (TNKSs), members of the PARP family, in pathogenesis of IHF remains unknown. We investigated the expression and activation of TNKSs in myocardium of IHF patients and MI rats. We explored the cardioprotective effect of TNKS inhibition in an isoproterenol-induced zebrafish HF model. In IHF patients, we observed elevated TNKS2 and DICER and concomitant upregulation of miR-34a-5p and miR-21-5p in non-infarcted myocardium. In a rat MI model, we found augmented TNKS2 and DICER in the border and infarct areas at the early stage of post-MI. We also observed consistently increased TNKS1 in the border and infarct areas and destabilized AXIN in the infarct area from 4 weeks onward, which in turn triggered Wnt/ß-catenin signaling. In an isoproterenol-induced HF zebrafish model, inhibition of TNKS activity with XAV939, a TNKSs-specific inhibitor, protected against ventricular dilatation and cardiac dysfunction and abrogated overactivation of Wnt/ß-catenin signaling and dysregulation of miR-34a-5p induced by isoproterenol. Our study unravels a potential role of TNKSs in the pathogenesis of IHF by regulating Wnt/ß-catenin signaling and possibly modulating miRNAs and highlights the pharmacotherapeutic potential of TNKS inhibition for prevention of IHF.


Subject(s)
Heart Failure , MicroRNAs , Tankyrases , Animals , Dilatation , Heart Failure/drug therapy , Isoproterenol/pharmacology , MicroRNAs/genetics , Rats , Tankyrases/antagonists & inhibitors , Tankyrases/metabolism , Wnt Signaling Pathway , Zebrafish/metabolism , beta Catenin/metabolism
18.
Future Virol ; 2022 Jul.
Article in English | MEDLINE | ID: mdl-35935448

ABSTRACT

Paxlovid™ is a promising antiviral oral medication for patients at a high risk of a severe form of COVID-19. Regarding COVID-19 patients who have hypercholesterolemia and are at high or very high risk for an acute atherothrombotic cardiovascular event, we are highlighting patients with heterozygous familial hypercholesterolemia as an example of severe hypercholesterolemia. Unfortunately, the concomitant use of Paxlovid and a statin, which is highly dependent on cytochrome P4507A (CYP3A) for clearance, may result in significant drug interactions. Since an abrupt withdrawal of statin use may cause serious negative rebound effects on the cardiovascular system, it is essential to continue statin treatment also during the 5-day Paxlovid treatment period. During Paxlovid treatment, simvastatin and lovastatin need to be substituted with another statin, such as pravastatin or fluvastatin, while a reduction of the dose of atorvastatin and rosuvastatin is recommended.

20.
Ann Med ; 54(1): 1952-1955, 2022 12.
Article in English | MEDLINE | ID: mdl-35818956

ABSTRACT

Based on separate protective mechanisms related to lipid metabolism, viral cell entry and inflammation, fibrate treatment might be advantageous among patients who have been taking fibrates before SARS-CoV-2 infection and continue taking them during the infection. Based on published data on hospitalized COVID-19 patients, we recommend that the clinicians should ask their patients with metabolic syndrome who are already taking fibrates to continue fibrate treatment during the COVID-19 illness. This recommendation applies to both outpatients and hospitalized patients. However, results from the ongoing randomized controlled trials (RCTs) using fenofibrate treatment for the prevention or treatment of COVID-19 have yet to prove that fenofibrate is clinically significant for this indication.KEY MESSAGESThe role of fibrates as a repurpose to treat SARS-CoV-2 is under investigation in at least three ongoing RCTs.Obesity, diabetes, hypertension and dyslipidaemia, individually or clustered as a discrete phenotype, the metabolic syndrome, typically associate with a more severe course of COVID-19.Fibrate treatment seems to be most advantageous among patients who have been taken fibrates before SARS-CoV-2 infection and are continuing to take them during the infection.We recommend that the clinicians encourage their patients who are already taking fibrate to continue using the drug throughout the COVID-19 illness.


Subject(s)
COVID-19 Drug Treatment , Fenofibrate , Metabolic Syndrome , Fenofibrate/therapeutic use , Fibric Acids/therapeutic use , Guidelines as Topic , Humans , Metabolic Syndrome/complications , Metabolic Syndrome/drug therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL