Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13435, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862650

ABSTRACT

Diabetic corneal neuropathy (DCN) is a common diabetic ocular complication with limited treatment options. In this study, we investigated the effects of topical and oral fenofibrate, a peroxisome proliferator-activated receptor-α agonist, on the amelioration of DCN using diabetic mice (n = 120). Ocular surface assessments, corneal nerve and cell imaging analysis, tear proteomics and its associated biological pathways, immuno-histochemistry and western blot on PPARα expression, were studied before and 12 weeks after treatment. At 12 weeks, PPARα expression markedly restored after topical and oral fenofibrate. Topical fenofibrate significantly improved corneal nerve fibre density (CNFD) and tortuosity coefficient. Likewise, oral fenofibrate significantly improved CNFD. Both topical and oral forms significantly improved corneal sensitivity. Additionally, topical and oral fenofibrate significantly alleviated diabetic keratopathy, with fenofibrate eye drops demonstrating earlier therapeutic effects. Both topical and oral fenofibrate significantly increased corneal ß-III tubulin expression. Topical fenofibrate reduced neuroinflammation by significantly increasing the levels of nerve growth factor and substance P. It also significantly increased ß-III-tubulin and reduced CDC42 mRNA expression in trigeminal ganglions. Proteomic analysis showed that neurotrophin signalling and anti-inflammation reactions were significantly up-regulated after fenofibrate treatment, whether applied topically or orally. This study concluded that both topical and oral fenofibrate ameliorate DCN, while topical fenofibrate significantly reduces neuroinflammation.


Subject(s)
Cornea , Diabetes Mellitus, Experimental , Diabetic Neuropathies , Fenofibrate , PPAR alpha , Animals , PPAR alpha/agonists , PPAR alpha/metabolism , Mice , Fenofibrate/pharmacology , Fenofibrate/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , Cornea/metabolism , Cornea/drug effects , Cornea/innervation , Cornea/pathology , Male , Administration, Oral , Administration, Topical , Corneal Diseases/drug therapy , Corneal Diseases/etiology , Corneal Diseases/metabolism , Corneal Diseases/pathology , Mice, Inbred C57BL , Proteomics/methods
2.
APL Bioeng ; 7(4): 049901, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37868707

ABSTRACT

[This corrects the article DOI: 10.1063/5.0138732.].

3.
APL Bioeng ; 7(3): 031504, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37736016

ABSTRACT

Cell manipulation techniques such as those based on three-dimensional (3D) bioprinting and microfluidic systems have recently been developed to reconstruct complex 3D tissue structures in vitro. Compared to these technologies, magnetic force-based cell manipulation is a simpler, scaffold- and label-free method that minimally affects cell viability and can rapidly manipulate cells into 3D tissue constructs. As such, there is increasing interest in leveraging this technology for cell assembly in tissue engineering. Cell manipulation using magnetic forces primarily involves two key approaches. The first method, positive magnetophoresis, uses magnetic nanoparticles (MNPs) which are either attached to the cell surface or integrated within the cell. These MNPs enable the deliberate positioning of cells into designated configurations when an external magnetic field is applied. The second method, known as negative magnetophoresis, manipulates diamagnetic entities, such as cells, in a paramagnetic environment using an external magnetic field. Unlike the first method, this technique does not require the use of MNPs for cell manipulation. Instead, it leverages the magnetic field and the motion of paramagnetic agents like paramagnetic salts (Gadobutrol, MnCl2, etc.) to propel cells toward the field minimum, resulting in the assembly of cells into the desired geometrical arrangement. In this Review, we will first describe the major approaches used to assemble cells in vitro-3D bioprinting and microfluidics-based platforms-and then discuss the use of magnetic forces for cell manipulation. Finally, we will highlight recent research in which these magnetic force-based approaches have been applied and outline challenges to mature this technology for in vitro tissue engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...