Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(25): e2322264121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865265

ABSTRACT

Despite the tremendous clinical potential of nucleic acid-based vaccines, their efficacy to induce therapeutic immune response has been limited by the lack of efficient local gene delivery techniques in the human body. In this study, we develop a hydrogel-based organic electronic device (µEPO) for both transdermal delivery of nucleic acids and in vivo microarrayed cell electroporation, which is specifically oriented toward one-step transfection of DNAs in subcutaneous antigen-presenting cells (APCs) for cancer immunotherapy. The µEPO device contains an array of microneedle-shaped electrodes with pre-encapsulated dry DNAs. Upon a pressurized contact with skin tissue, the electrodes are rehydrated, electrically triggered to release DNAs, and then electroporate nearby cells, which can achieve in vivo transfection of more than 50% of the cells in the epidermal and upper dermal layer. As a proof-of-concept, the µEPO technique is employed to facilitate transdermal delivery of neoantigen genes to activate antigen-specific immune response for enhanced cancer immunotherapy based on a DNA vaccination strategy. In an ovalbumin (OVA) cancer vaccine model, we show that high-efficiency transdermal transfection of APCs with OVA-DNAs induces robust cellular and humoral immune responses, including antigen presentation and generation of IFN-γ+ cytotoxic T lymphocytes with a more than 10-fold dose sparing over existing intramuscular injection (IM) approach, and effectively inhibits tumor growth in rodent animals.


Subject(s)
Electroporation , Immunotherapy , Vaccines, DNA , Animals , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Electroporation/methods , Mice , Immunotherapy/methods , Administration, Cutaneous , Neoplasms/therapy , Neoplasms/immunology , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Ovalbumin/immunology , Ovalbumin/administration & dosage , Antigen-Presenting Cells/immunology , Female , Mice, Inbred C57BL , Humans , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL