Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Biol Chem ; 300(5): 107274, 2024 May.
Article in English | MEDLINE | ID: mdl-38588809

ABSTRACT

The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex forms a 4-helix coiled-coil bundle consisting of 16 layers of interacting side chains upon membrane fusion. The central layer (layer 0) is highly conserved and comprises three glutamines (Q) and one arginine (R), and thus SNAREs are classified into Qa-, Qb-, Qc-, and R-SNAREs. Homotypic vacuolar fusion in Saccharomyces cerevisiae requires the SNAREs Vam3 (Qa), Vti1 (Qb), Vam7 (Qc), and Nyv1 (R). However, the yeast strain lacking NYV1 (nyv1Δ) shows no vacuole fragmentation, whereas the vam3Δ and vam7Δ strains display fragmented vacuoles. Here, we provide genetic evidence that the R-SNAREs Ykt6 and Nyv1 are functionally redundant in vacuole homotypic fusion in vivo using a newly isolated ykt6 mutant. We observed the ykt6-104 mutant showed no defect in vacuole morphology, but the ykt6-104 nyv1Δ double mutant had highly fragmented vacuoles. Furthermore, we show the defect in homotypic vacuole fusion caused by the vam7-Q284R mutation was compensated by the nyv1-R192Q or ykt6-R165Q mutations, which maintained the 3Q:1R ratio in the layer 0 of the SNARE complex, indicating that Nyv1 is exchangeable with Ykt6 in the vacuole SNARE complex. Unexpectedly, we found Ykt6 assembled with exocytic Q-SNAREs when the intrinsic exocytic R-SNAREs Snc1 and its paralog Snc2 lose their ability to assemble into the exocytic SNARE complex. These results suggest that Ykt6 may serve as a backup when other R-SNAREs become dysfunctional and that this flexible assembly of SNARE complexes may help cells maintain the robustness of the vesicular transport network.


Subject(s)
R-SNARE Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Vacuoles , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Vacuoles/metabolism , Vacuoles/genetics , R-SNARE Proteins/metabolism , R-SNARE Proteins/genetics , Membrane Fusion , Exocytosis , SNARE Proteins/metabolism , SNARE Proteins/genetics , Mutation
2.
FEBS Open Bio ; 3: 55-64, 2013.
Article in English | MEDLINE | ID: mdl-23772375

ABSTRACT

A water-soluble selenoxide (DHS(ox)) having a five-membered ring structure enables rapid and selective conversion of cysteinyl SH groups in a polypeptide chain into SS bonds in a wide pH and temperature range. It was previously demonstrated that the second-order rate constants for the SS formation with DHS(ox) would be proportional to the number of the free SH groups present in the substrate if there is no steric congestion around the SH groups. In the present study, kinetics of the SS formation with DHS(ox) was extensively studied at pH 4-10 and 25 °C by using reduced ribonuclease A, recombinant hirudin variant (CX-397), insulin A- and B-chains, and relaxin A-chain, which have two to eight cysteine residues, as polythiol substrates. The obtained rate constants showed stochastic SS formation behaviors under most conditions. However, the rate constants for CX-397 at pH 8.0 and 10.0 were not proportional to the number of the free SH groups, suggesting that the SS intermediate ensembles possess densely packed structures under weakly basic conditions. The high two-electron redox potential of DHS(ox) (375 mV at 25 °C) compared to l-cystine supported the high ability of DHS(ox) for SS formation in a polypeptide chain. Interestingly, the rate constants of the SS formation jumped up at a pH around the pK a value of the cysteinyl SH groups. The SS formation velocity was slightly decreased by addition of a denaturant due probably to the interaction between the denaturant and the peptide. The stochastic behaviors as well as the absolute values of the second-order rate constants in comparison to dithiothreitol (DTT(red)) are useful to probe the chemical reactivity and conformation, hence the folding, of polypeptide chains.

3.
J Clin Biochem Nutr ; 51(3): 221-6, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23170051

ABSTRACT

The inhalation of asbestos is a risk factor for the development of malignant mesothelioma and lung cancer. Based on the broad surface area of asbestos fibers and their ability to enter the cytoplasm and nuclei of cells, it was hypothesized that proteins that adsorb onto the fiber surface play a role in the cytotoxicity and carcinogenesis of asbestos fibers. However, little is known about which proteins adsorb onto asbestos. Previously, we systematically identified asbestos-interacting proteins and classified them into eight sub-categories: chromatin/nucleotide/RNA-binding proteins, ribosomal proteins, cytoprotective proteins, cytoskeleton-associated proteins, histones and hemoglobin. Here, we report an adsorption profile of proteins for the three commercially used asbestos compounds: chrysotile, crocidolite and amosite. We quantified the amounts of adsorbed proteins by analyzing the silver-stained gels of sodium dodecyl sulfate-polyacrylamide gel electrophoresis with ImageJ software, using the bands for amosite as a standard. We found that histones were most adsorptive to crocidolite and that chromatin-binding proteins were most adsorptive to chrysotile. The results suggest that chrysotile and crocidolite directly interact with chromatin structure through different mechanisms. Furthermore, RNA-binding proteins preferably interacted with chrysotile, suggesting that chrysotile may interfere with transcription and translation. Our results provide novel evidence demonstrating that the specific molecular interactions leading to carcinogenesis are different between chrysotile and crocidolite.

SELECTION OF CITATIONS
SEARCH DETAIL