Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 139: 440-458, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30686447

ABSTRACT

The Northern Baltic Sea, as one of the few areas with busy ship traffic in ice-covered waters, is a typical sea area exposed to risk of ship accidents and oil spills in ice conditions. Therefore, oil spill capability for response and recovery in this area is required to reduce potential oil spill effects. Currently, there are no integrated, scenario-based models for oil spill response and recovery in ice conditions. This paper presents a Bayesian Network (BN) model for assessing oil spill recovery effectiveness, focusing on mechanical recovery. It aims to generate holistic understanding and insights about the oil spill-to-recovery phase, and to estimate oil recovery effectiveness in representative winter conditions. A number of test scenarios are shown and compared to get insight into the impact resulting from different oil types, spill sizes and winter conditions. The strength of evidence of the model is assessed in line with the adopted risk perspective.


Subject(s)
Environmental Restoration and Remediation/methods , Models, Theoretical , Petroleum Pollution , Bayes Theorem , Ice Cover , Seasons , Ships
2.
Water Res ; 145: 418-428, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30176505

ABSTRACT

A fairly clean ice cover can form over a contaminated water pond when the air-cooled surface of water freezes and impurities are efficiently expelled to the remaining water underneath. Natural freeze crystallization has recently been studied as a potential wastewater purification method with aqueous solutions on a laboratory scale. The effect of impurity inclusions on ice strength has been researched in model ice basins over the past few decades. It is of interest to discover how efficiently natural freeze separation works under real weather conditions before freezing can be utilized for wastewater treatment application. Herein, understanding the mechanical strength properties of naturally frozen wastewater (ice) is important when planning ice breaking and harvesting devices. This research implemented in-situ measurements of the flexural and compressive strength of ice in natural ice-covered environments of a freshwater lake, two peatlands and three mining site basins, and compares the determined strength with analyzed impurities of the ice. The results showed that despite varying ice growth conditions and initial water constituents, it was possible to deduce an evident yet simple relationship between mean ice strength and ice impurities: the more impure the ice is, the lower the value of strength is Based on this exploration, it was concluded that separation efficiencies, i.e. the impurity removal ratio between basin water and ice, from 65% up to 90% can be achieved by natural freezing.


Subject(s)
Ice , Wastewater , Crystallization , Freezing , Water
3.
Mar Pollut Bull ; 108(1-2): 242-62, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27207023

ABSTRACT

The wintertime maritime traffic operations in the Gulf of Finland are managed through the Finnish-Swedish Winter Navigation System. This establishes the requirements and limitations for the vessels navigating when ice covers this area. During winter navigation in the Gulf of Finland, the largest risk stems from accidental ship collisions which may also trigger oil spills. In this article, a model for managing the risk of winter navigation operations is presented. The model analyses the probability of oil spills derived from collisions involving oil tanker vessels and other vessel types. The model structure is based on the steps provided in the Formal Safety Assessment (FSA) by the International Maritime Organization (IMO) and adapted into a Bayesian Network model. The results indicate that ship independent navigation and convoys are the operations with higher probability of oil spills. Minor spills are most probable, while major oil spills found very unlikely but possible.


Subject(s)
Ice Cover , Models, Theoretical , Petroleum Pollution/prevention & control , Risk Management , Seasons , Ships , Bayes Theorem , Finland , Humans , Oceans and Seas , Sweden
4.
Accid Anal Prev ; 79: 100-16, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25819212

ABSTRACT

Winter navigation is a complex but common operation in north-European sea areas. In Finnish waters, the smooth flow of maritime traffic and safety of vessel navigation during the winter period are managed through the Finnish-Swedish winter navigation system (FSWNS). This article focuses on accident risks in winter navigation operations, beginning with a brief outline of the FSWNS. The study analyses a hazard identification model of winter navigation and reviews accident data extracted from four winter periods. These are adopted as a basis for visualizing the risks in winter navigation operations. The results reveal that experts consider ship independent navigation in ice conditions the most complex navigational operation, which is confirmed by accident data analysis showing that the operation constitutes the type of navigation with the highest number of accidents reported. The severity of the accidents during winter navigation is mainly categorized as less serious. Collision is the most typical accident in ice navigation and general cargo the type of vessel most frequently involved in these accidents. Consolidated ice, ice ridges and ice thickness between 15 and 40cm represent the most common ice conditions in which accidents occur. Thus, the analysis presented in this article establishes the key elements for identifying the operation types which would benefit most from further safety engineering and safety or risk management development.


Subject(s)
Accidents/statistics & numerical data , Risk Assessment/statistics & numerical data , Safety/statistics & numerical data , Ships/statistics & numerical data , Cold Climate , Finland , Models, Theoretical , North Sea , Seasons , Sweden
5.
Mar Pollut Bull ; 76(1-2): 61-71, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24113092

ABSTRACT

Existing models estimating oil spill costs at sea are based on data from the past, and they usually lack a systematic approach. This make them passive, and limits their ability to forecast the effect of the changes in the oil combating fleet or location of a spill on the oil spill costs. In this paper we make an attempt towards the development of a probabilistic and systematic model estimating the costs of clean-up operations for the Gulf of Finland. For this purpose we utilize expert knowledge along with the available data and information from literature. Then, the obtained information is combined into a framework with the use of a Bayesian Belief Networks. Due to lack of data, we validate the model by comparing its results with existing models, with which we found good agreement. We anticipate that the presented model can contribute to the cost-effective oil-combating fleet optimization for the Gulf of Finland. It can also facilitate the accident consequences estimation in the framework of formal safety assessment (FSA).


Subject(s)
Environmental Restoration and Remediation/economics , Models, Statistical , Petroleum Pollution/statistics & numerical data , Water Pollution, Chemical/statistics & numerical data , Environmental Restoration and Remediation/methods , Finland , Petroleum Pollution/economics , Risk Assessment/methods , Water Pollution, Chemical/economics
SELECTION OF CITATIONS
SEARCH DETAIL