Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
2.
Plants (Basel) ; 12(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37447041

ABSTRACT

The considerable loss of crop productivity each year due to plant disease or pathogen invasion during pre- or post-harvest storage conditions is one of the most severe challenges to achieving the goals of food security for the rising global population. Although chemical pesticides severally affect the food quality and health of consumers, a large population relies on them for plant disease management. But currently, endophytes have been considered one of the most suitable biocontrol agents due to better colonization and acclimatization potential. However, a very limited number of endophytes have been used commercially as biocontrol agents. Isolation of endophytes and their screening to represent potential characteristics as biocontrol agents are considered challenging by different procedures. Through a web search using the keywords "endophytes as biocontrol agents" or "biocontrol mechanism of endophytes," we have succinctly summarised the isolation strategies and different in vitro and in vivo biocontrol screening methods of endophytic biocontrol agents in the present review. In this paper, biocontrol mechanisms of endophytes and their potential application in plant disease management have also been discussed. Furthermore, the registration and regulatory mechanism of the endophytic biocontrol agents are also covered.

3.
Microorganisms ; 11(4)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37110422

ABSTRACT

Flavonoids encompass a heterogeneous group of secondary metabolites with exceptional health benefits. Chrysin, a natural dihydroxyflavone, possesses numerous bioactive properties, such as anticancer, antioxidative, antidiabetic, anti-inflammatory, etc. However, using traditional sources of chrysin involves extracting honey from plants, which is non-scalable, unsustainable, and depends on several factors, including geography, climatic conditions, and the season, which limits its production at a larger scale. Recently, microbial production of desirable metabolites has garnered attention due to the cost-effectiveness, easy scale-up, sustainability, and low emission of waste. We previously reported for the first time the chrysin-producing marine endophytic fungus Chaetomium globosum, associated with a marine green alga. To extend our understanding of chrysin biosynthesis in C. globosum, in the present study, we have assessed the presence of flavonoid pathway intermediates in C. globosum extracts using LC-MS/MS. The presence of several key metabolites, such as dihydrokaempferol, chalcone, galangin, baicalein, chrysin, p-Coumaroyl-CoA, and p-Cinnamoyl-CoA, indicates the role of flavonoid biosynthesis machinery in the marine fungus. Further, we have aimed to enhance the production of chrysin with three different strategies: (1) optimizing the fermentation parameters, namely, growth medium, incubation time, pH, and temperature; (2) feeding key flavonoid pathway intermediates, i.e., phenylalanine and cinnamic acid; (3) elicitation with biotic elicitors, such as polysaccharide, yeast extract, and abiotic elicitors that include UV radiation, salinity, and metal stress. The combined effect of the optimized parameters resulted in a 97-fold increase in the chrysin yield, resulting in a fungal cell factory. This work reports the first approach for enhanced production of chrysin and can serve as a template for flavonoid production enhancement using marine endophytic fungi.

4.
Plant Physiol Biochem ; 197: 107637, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36933507

ABSTRACT

Herein, the impact of chitosan fabricated biogenic silver nanoparticles (Ch@BSNP) has been evaluated for the protective management of bacterial leaf spot (BLS) disease in tomatoes caused by Xanthomonas campestris (NCIM5028). The Ch@BSNP originated by the Trichoderma viride (MTCC5661) derived extracellular compounds and subsequent chitosan hybridization. Spherical-shaped Ch@BSNP (30-35 nm) treated diseased plants were able to combat the biotic stress, as evidenced by the decreased elevated response of stress markers viz; anthocyanin (34.02%), proline (45.00%), flavonoids (20.26%), lipid peroxidation (10.00%), guaiacol peroxidase (36.58%), ascorbate peroxidase (41.50%), polyphenol oxidase (25.34%) and phenylalanine ammonia-lyase (2.10 fold) as compared to untreated diseased plants. Increased biochemical content specifically sugar (15.43%), phenolics (49.10%), chlorophyll, and carotenoids were measured in Ch@BSNP-treated diseased plants compared to untreated X. campestris-infested plants. The Ch@BSNP considerably reduced stress by increasing net photosynthetic rate and water use efficiency along with decreased transpiration rate and stomatal conductance in comparison to infected plants. Additionally, the expression of defense-regulatory genes viz; growth responsive (AUX, GH3, SAUR), early defense responsive (WRKYTF22, WRKY33, NOS1), defense responsive (PR1, NHO1, NPR1), hypersensitivity responsive (Pti, RbohD, OXI1) and stress hormones responsive (MYC2, JAR1, ERF1) were found to be upregulated in diseased plants while being significantly downregulated in Ch@BSNP-treated diseased plants. Furthermore, fruits obtained from pathogen-compromised plants treated with Ch@BSNP had higher levels of health-promoting compounds including lycopene and beta-carotene than infected plant fruits. This nano-enabled and environmentally safer crop protection strategy may encourage a sustainable agri-system towards the world's growing food demand and promote food security.


Subject(s)
Chitosan , Metal Nanoparticles , Solanum lycopersicum , Silver/chemistry , Defense Mechanisms
5.
Front Microbiol ; 14: 1102615, 2023.
Article in English | MEDLINE | ID: mdl-36778867

ABSTRACT

Antimicrobial nanoparticles have gained the status of a new generation of drugs that can kill bacterial pathogens by multiple means; however, nanoparticle resistance acquired by some bacterial pathogens has evoked a cause of concern. Several reports suggested that bacteria can develop nanoparticles, specifically metal nanoparticle resistance, by mechanisms: nanoparticle transformation-induced oxidative stress, membrane alterations, reversible adaptive resistance, irreversible modifications to cell division, and a change in bacterial motility and resistance. Surface properties, concentration and aggregation of nanoparticles, biofilm forming and metal exclusion capacity, and R plasmid and flagellin synthesis by bacteria are crucial factors in the development of nanoparticle resistance in bacteria. Studies reported the resistance reversal by modifying the surface corona of nanoparticles or inhibiting flagellin production by bacterial pathogens. Furthermore, strict regulation regarding the use and disposal of nano-waste across the globe, the firm knowledge of microbe-nanoparticle interaction, and the regulated disposal of nanoparticles in soil and water is required to prevent microbes from developing nanoparticle resistance.

6.
Plants (Basel) ; 12(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36771602

ABSTRACT

The Western Ghats, India, is a hotspot for lichen diversity. However, the pharmacological importance of lichen-associated metabolites remains untapped. This study aimed to evaluate the cytotoxic potential of lichens of this region. For this, sixteen macrolichens were collected and identified from two locations in the Western Ghats. The acetone extract of Usnea cornuta (UC2A) showed significant cytotoxicity towards multiple human cancer cell lines. Interestingly, co-treatment with chloroquine (CQ), an autophagy inhibitor, increased the cytotoxic potential of the UC2A extract. A gas chromatography mass spectrometry (GCMS) study revealed usnic acid (UA), atraric acid and barbatic acid as the dominant cytotoxic compounds in the UC2A extract. Further, UA was purified and identified from the UC2A extract and evaluated for cytotoxicity in HeLa cells. The monodansyl cadaverine and mitotracker red double staining revealed the autophagy-inducing activities of UA, and the inhibition of autophagy was confirmed via CQ treatment. Autophagy inhibition increased the cytotoxicity of UA by 12-16% in a concentration-dependent manner. It also increased lipid peroxidation, ROS levels and mitochondrial depolarization and decreased glutathione availability. A decrease in zeta potential and a 40% increase in caspase 3/7 activity were also noted after CQ treatment of UA-treated cells. Thus, cytotoxicity of UA can be increased by inhibiting autophagy.

7.
Front Plant Sci ; 13: 1026575, 2022.
Article in English | MEDLINE | ID: mdl-36466226

ABSTRACT

As endophytes are widely distributed in the plant's internal compartments and despite having enormous potential as a biocontrol agent against postharvest diseases of fruits, the fruit-endophyte-pathogen interactions have not been studied detail. Therefore, this review aims to briefly discuss the colonization patterns of endophytes and pathogens in the host tissue, the diversity and distribution patterns of endophytes in the carposphere of fruits, and host-endophyte-pathogen interactions and the molecular mechanism of the endophytic microbiome in postharvest disease management in fruits. Postharvest loss management is one of the major concerns of the current century. It is considered a critical challenge to food security for the rising global population. However, to manage the postharvest loss, still, a large population relies on chemical fungicides, which affect food quality and are hazardous to health and the surrounding environment. However, the scientific community has searched for alternatives for the last two decades. In this context, endophytic microorganisms have emerged as an economical, sustainable, and viable option to manage postharvest pathogens with integral colonization properties and eliciting a defense response against pathogens. This review extensively summarizes recent developments in endophytic interactions with harvested fruits and pathogens-the multiple biocontrol traits of endophytes and colonization and diversity patterns of endophytes. In addition, the upscale commercial production of endophytes for postharvest disease treatment is discussed.

8.
Plants (Basel) ; 11(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36559563

ABSTRACT

Plants host diverse microbial communities, which undergo a complex interaction with each other. Plant-associated microbial communities provide various benefits to the host directly or indirectly, viz. nutrient acquisition, protection from pathogen invaders, mitigation from different biotic and abiotic stress. Presently, plant-associated microbial strains are frequently utilized as biofertilizers, biostimulants and biocontrol agents in greenhouse and field conditions and have shown satisfactory results. Nowadays, the plant/fruit microbiome has been employed to control postharvest pathogens and postharvest decay, and to maintain the quality or shelf life of fruits. In this context, the intervention of the natural fruit microbiome or the creation of synthetic microbial communities to modulate the functional attributes of the natural microbiome is an emerging aspect. In this regard, we discuss the community behavior of microbes in natural conditions and how the microbiome intervention plays a crucial role in the postharvest management of fruits.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 282: 121666, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-35921748

ABSTRACT

Mapping the structural changes in membrane lipids, proteins, polysaccharides and nucleic acids has opened new channels for understanding the mode of action of anticancer natural products. Earlier, we synthesized chrysin nanoparticles (NChr) with good bioavailability, and characterized its size, surface charge, entrapment efficiency, and drug release pattern using PLGA polymer. NChr induced concentration dependent cytotoxicity in HeLa cells with an IC50 of 61.54 ± 1.2 µM in comparison with free chrysin with IC50 of 86.51 ± 2.9 µM. Since nanoparticles interact dynamically with cell membranes, organelles, proteins and DNA, it is necessary to understand the interplay of nanodrug induced macromolecular changes in cancer cells. In this work, we obtained signatures of NChr-induced biochemical changes in HeLa cells by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy technique coupled with flow cytometry. NChr induced cell membrane disruption, G1 phase cell cycle arrest, and increased externalization of phosphatidylserine leading to apoptosis indicating the biochemical perturbations in membrane lipids and DNA of HeLa cells in comparison with untreated cells. The 1300-1000 cm-1 spectral region indicated NChr interaction with the ribose sugar backbone and DNA denaturation. Spectral range 1800-1400 cm-1 indicated a concentration dependent decrease in α helical and ß sheet structures which may lead to protein degradation during apoptosis. The spectral range 3000-2800 cm-1 indicated the lipid peroxidation in response to NChr treatment. This is the first study describing the bio-macromolecular changes induced by a nano encapsulated drug and can pave the way to investigate unconventional modes of action for bioactive formulations.


Subject(s)
Apoptosis , DNA , DNA/pharmacology , Flow Cytometry , HeLa Cells , Humans , Membrane Lipids , Spectroscopy, Fourier Transform Infrared
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 274: 121098, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35257985

ABSTRACT

Many natural products induce apoptotic cell death in cancer cells, though studies on their interactions with macromolecules are limited. For the first time, this study demonstrated the cytotoxic potential of usnic acid (UA) against squamous carcinoma (A-431) cells and the associated changes in cell surface proteins, lipids and DNA by attenuated total reflection- fourier transform infrared spectroscopy (ATR-FTIR) and dynamic light scattering (DLS) spectroscopic studies. The IC50 for UA was 98.9 µM after treatment of A-431 cells for 48 h, while the IC50 reduced to 39.2 µM after 72 h of incubation time. UA induced oxidative stress in treated cells as confirmed by DCFHDA flow cytometry assay, depletion in reduced glutathione and increase in lipid peroxidation. The oxidative stress resulted in conformation change in amide I, amide II protein bands and DNA as observed by ATR-FTIR in UA treated A-431 cells. Shift in secondary structures of proteins from α helix to ß sheets and structural changes in DNA was observed in UA treated A-431 cells. An increase in the band intensity of phospholipids, increased distribution of lipid and change in membrane potential was noted in UA treated cells, which was confirmed by externalization of phosphatidylserine to the outer membrane by annexin V-FITC/PI assay. Increase in mitochondrial membrane potential, cell cycle arrest at G0/G1 phase by flow cytometry and activation of caspase-3/7 dependent proteins confirmed the UA induced apoptosis in treated A-431 cells. FTIR and DLS spectroscopy confirmed the changes in biomolecules after UA treatment, which were associated with apoptosis, as observed by flow cytometry.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell , Amides , Benzofurans , Cell Line, Tumor , DNA , Flow Cytometry , Humans , Spectroscopy, Fourier Transform Infrared
11.
J Control Release ; 338: 813-836, 2021 10 10.
Article in English | MEDLINE | ID: mdl-34478750

ABSTRACT

The recent outbreak of SARS-CoV-2 has forever altered mankind resulting in the COVID-19 pandemic. This respiratory virus further manifests into vital organ damage, resulting in severe post COVID-19 complications. Nanotechnology has been moonlighting in the scientific community to combat several severe diseases. This review highlights the triune of the nano-toolbox in the areas of diagnostics, therapeutics, prevention, and mitigation of SARS-CoV-2. Nanogold test kits have already been on the frontline of rapid detection. Breath tests, magnetic nanoparticle-based nucleic acid detectors, and the use of Raman Spectroscopy present myriads of possibilities in developing point of care biosensors, which will ensure sensitive, affordable, and accessiblemass surveillance. Most of the therapeutics are trying to focus on blocking the viral entry into the cell and fighting with cytokine storm, using nano-enabled drug delivery platforms. Nanobodies and mRNA nanotechnology with lipid nanoparticles (LNPs) as vaccines against S and N protein have regained importance. All the vaccines coming with promising phase 3 clinical trials have used nano-delivery systems for delivery of vaccine-cargo, which are currently administered widely in many countries. The use of chemically diverse metal, carbon and polymeric nanoparticles, nanocages and nanobubbles demonstrate opportunities to develop anti-viral nanomedicine. In order to prevent and mitigate the viral spread, high-performance charged nanofiber filters, spray coating of nanomaterials on surfaces, novel materials for PPE kits and facemasks have been developed that accomplish over 90% capture of airborne SARS-CoV-2. Nano polymer-based disinfectants are being tested to make smart-transport for human activities. Despite the promises of this toolbox, challenges in terms of reproducibility, specificity, efficacy and emergence of new SARS-CoV-2 variants are yet to overcome.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Reproducibility of Results
12.
Microorganisms ; 9(8)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34442808

ABSTRACT

Endophytic microorganisms present inside the host plant play an essential role in host fitness, nutrient supply and stress tolerance. Endophytes are often used in sustainable agriculture as biofertilizers, biopesticides and as inoculants to mitigate abiotic stresses including salinity, drought, cold and pH variation in the soil. In changing climatic conditions, abiotic stresses create global challenges to achieve optimum crop yields in agricultural production. Plants experience stress conditions that involve endogenous boosting of their immune system or the overexpression of their defensive redox regulatory systems with increased reactive oxygen species (ROS). However, rising stress factors overwhelm the natural redox protection systems of plants, which leads to massive internal oxidative damage and death. Endophytes are an integral internal partner of hosts and have been shown to mitigate abiotic stresses via modulating local or systemic mechanisms and producing antioxidants to counteract ROS in plants. Advancements in omics and other technologies have been made, but potential application of endophytes remains largely unrealized. In this review article, we will discuss the diversity, population and interaction of endophytes with crop plants as well as potential applications in abiotic stress management.

13.
Front Pharmacol ; 12: 542891, 2021.
Article in English | MEDLINE | ID: mdl-33981211

ABSTRACT

The endophytic fungal community in the marine ecosystem has been demonstrated to be relevant source of novel and pharmacologically active secondary metabolites. The current study focused on the evaluation of cytotoxic and apoptosis induction potential in the culture extracts of endophytic fungi associated with Sargassum muticum, a marine brown alga. The cytotoxicity of the four marine endophytes, Aspergillus sp., Nigrospora sphaerica, Talaromyces purpureogenus, and Talaromyces stipitatus, was evaluated by the MTT assay on HeLa cells. Further, several physicochemical parameters, including growth curve, culture media, and organic solvents, were optimized for enhanced cytotoxic activity of the selected extract. The Aspergillus sp. ethyl acetate extract (ASE) showed maximum cytotoxicity on multiple cancer cell lines. Chemical investigation of the metabolites by gas chromatography-mass spectroscopy (GC-MS) showed the presence of several compounds, including quinoline, indole, 2,4-bis(1,1-dimethylethyl) phenol, and hexadecenoic acid, known to be cytotoxic in ASE. The ASE was then tested for cytotoxicity in vitro on a panel of six human cancer cell lines, namely, HeLa (cervical adenocarcinoma), MCF-7 (breast adenocarcinoma), Hep G2 (hepatocellular carcinoma), A-549 (lung carcinoma), A-431 (skin/epidermis carcinoma), and LN-229 (glioblastoma). HeLa cells were most vulnerable to ASE treatment with an IC50 value of 24 ± 2 µg/ml. The mechanism of cytotoxicity exhibited by the ASE was further investigated on Hela cells. The results showed that the ASE was capable of inducing apoptosis in HeLa cells through production of reactive oxygen species, depolarization of mitochondrial membrane, and activation of the caspase-3 pathway, which shows a possible activation of the intrinsic apoptosis pathway. It also arrested the HeLa cells at the G2/M phase of the cell cycle, eventually leading to apoptosis. Through this study, we add to the knowledge about the marine algae associated with fungal endophytes and report its potential for purifying specific compounds responsible for cytotoxicity.

14.
Front Pharmacol ; 12: 576093, 2021.
Article in English | MEDLINE | ID: mdl-33912030

ABSTRACT

Chloroquine and its derivatives have been used since ages to treat malaria and have also been approved by the FDA to treat autoimmune diseases. The drug employs pH-dependent inhibition of functioning and signalling of the endosome, lysosome and trans-Golgi network, immunomodulatory actions, inhibition of autophagy and interference with receptor binding to treat cancer and many viral diseases. The ongoing pandemic of COVID-19 has brought the whole world on the knees, seeking an urgent hunt for an anti-SARS-CoV-2 drug. Chloroquine has shown to inhibit receptor binding of the viral particles, interferes with their replication and inhibits "cytokine storm". Though multiple modes of actions have been employed by chloroquine against multiple diseases, viral diseases can provide an added advantage to establish the anti-SARS-CoV-2 mechanism, the in vitro and in vivo trials against SARS-CoV-2 have yielded mixed results. The toxicological effects and dosage optimization of chloroquine have been studied for many diseases, though it needs a proper evaluation again as chloroquine is also associated with several toxicities. Moreover, the drug is inexpensive and is readily available in many countries. Though much of the hope has been created by chloroquine and its derivatives against multiple diseases, repurposing it against SARS-CoV-2 requires large scale, collaborative, randomized and unbiased clinical trials to avoid false promises. This review summarizes the use and the mechanism of chloroquine against multiple diseases, its side-effects, mechanisms and the different clinical trials ongoing against "COVID-19".

15.
3 Biotech ; 10(11): 465, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33088661

ABSTRACT

Baccatin III is an important precursor for the synthesis of clinically important anticancer drug Taxol. Previously, we have characterized a key enzyme of 10-deacetylbaccatin III-10-ß-O-acetyltransferase (DBAT) which catalyses the 10-deacetylbaccatin III into baccatin III in taxol biosynthesis. Here, in the present study, we have evaluated and compared the cytotoxic properties of the enzymatically synthesized baccatin III (ESB III) with standard baccatin III in different human cancer cell lines, namely human cervical cancer (HeLa), human lung cancer (A549), human skin cancer (A431) and human liver cancer cells (HepG2). Among the various cancer lines tested, HeLa was more susceptible to ESB III with IC50 of 4.30 µM while IC50 values for A549, A431 and HepG2 ranged from 4 to 7.81 µM. Further, it showed G2/M phase cell cycle arrest, production of reactive oxygen species and depolarised mitochondrial membrane potential. In addition, annexin V-FITC staining was performed which showed the apoptotic cell death of HeLa cells, when treated with ESB III. Hence, ESB III was capable to show anticancer activities by inducing apoptotic cell death which could further be used for the semisynthesis of taxol in future.

16.
Sci Rep ; 10(1): 18726, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33127928

ABSTRACT

The marine ecosystem is an extraordinary reserve of pharmaceutically important, bioactive compounds even in this "synthetic age". Marine algae-associated endophytic fungi have gained prominence as an important source of bioactive compounds. This study was conducted on secondary metabolites of Chaetomium globosum-associated with marine green alga Chaetomorpha media from the Konkan coastline, India. Its ethyl acetate extract (CGEE) exhibited an IC50 value of 7.9 ± 0.1 µg/mL on MCF-7 cells. CGEE exhibited G2M phase cell cycle arrest, ROS production and MMP loss in MCF-7 cells. The myco-components in CGEE contributing to the cytotoxicity were found by Gas Chromatography/Mass Spectrometry analyses. Chrysin, a dihydroxyflavone was one of the forty-six myco-components which is commonly found in honey, propolis and passionflower extracts. The compound was isolated and characterized as fungal chrysin using HPLC, UV-Vis spectroscopy, LC-MS, IR and NMR analyses by comparing with standard chrysin. The purified compound exhibited an IC50 value of 49.0 ± 0.6 µM while that of standard chrysin was 48.5 ± 1.6 µM in MCF-7 cells. It induced apoptosis, G1 phase cell cycle arrest, MMP loss, and ROS production. This is the first report of chrysin from an alternative source with opportunities for yield enhancement.


Subject(s)
Chaetomium/chemistry , Flavonoids/chemistry , A549 Cells , Biomass , Chlorophyta/microbiology , Chromatography, Thin Layer , Drug Discovery , Drug Screening Assays, Antitumor , Ecosystem , Endophytes/chemistry , Fermentation , Gas Chromatography-Mass Spectrometry , HEK293 Cells , HeLa Cells , Humans , India , Inhibitory Concentration 50 , MCF-7 Cells , Magnetic Resonance Spectroscopy , Reactive Oxygen Species/metabolism , Solvents
17.
Front Pharmacol ; 11: 1050, 2020.
Article in English | MEDLINE | ID: mdl-32754036

ABSTRACT

The sudden outbreak of the COVID-19 pandemic, caused by SARS-CoV-2, has put the whole world into a difficult situation, asking for the immediate development of therapeutics and vaccines against the disease. Bacillus Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis, has been administered for decades in many countries against tuberculosis. Today, when a solution against SARS-CoV-2 is urgently needed, the BCG vaccine has again come into the limelight owing to its earlier prevention of non-specific diseases. Data suggest a higher mortality rate of COVID-19 in non-BCG vaccinated countries, whereas the nations opting for BCG immunization have a comparatively lower mortality rate. The BCG vaccine is known to induce 'trained immunity' and generate 'non-specific' heterologous immune responses. It can confer anti-viral immunity by eliciting the production of pro-inflammatory cytokines, IL-6, TNF-α, IFN-γ, and IL-1ß. Though the initial results look promising, a long trail still needs to be followed to avoid false promises. The accuracy of nationwide data, the role of an already activated immune system against 'cytokine storms', optimization and timing of vaccine dosage, and balancing demand-supply are some of the relevant issues that must be resolved before reaching a final conclusion.

18.
Article in English | MEDLINE | ID: mdl-32363178

ABSTRACT

Bioengineered silver nanoparticles can emerge as a facile approach to combat plant pathogen, reducing the use of pesticides in an eco-friendly manner. The plants' response during tripartite interaction of plant, pathogen, and nanoparticles remains largely unknown. This study demonstrated the use of bioengineered silver nanoparticles in combating black spot disease caused by necrotrophic fungus Alternaria brassicicola in Arabidopsis thaliana via foliar spray. The particles reduced disease severity by 70-80% at 5 µg/ml without showing phytotoxicity. It elicited plant immunity by a significant reduction in reactive oxygen species (ROS), decreases in stress enzymes by 0.6-19.8-fold, and emergence of autophagy. Comparative plant proteomics revealed 599 proteins expressed during the interaction, where 117 differential proteins were identified. Among different categories, proteins involved in bioenergy and metabolism were most abundant (44%), followed by proteins involved in plant defense (20%). Metabolic profiling by gas chromatography-mass spectroscopy yielded 39 metabolite derivatives in non-polar fraction and 25 in the polar fraction of plant extracts. It was observed that proteins involved in protein biogenesis and early plant defense were overexpressed to produce abundant antimicrobial metabolites and minimize ROS production. Bioengineered silver nanoparticles performed dual functions to combat pathogen attack by killing plant pathogen and eliciting immunity by altering plant defense proteome and metabolome.

19.
FEMS Microbiol Lett ; 366(16)2019 08 01.
Article in English | MEDLINE | ID: mdl-31580434

ABSTRACT

A simple and facile way of using biogenic silver nanoparticles (BSNP) (10-20 nm) was developed for wound healing acceleration and suppression of wound infections. The BSNP were formulated in an ointment base, and the study to accelerate the wound healing process was conducted in a rat. The pH of the BSNP ointment, pH 6.8 ± 0.5, lies in normal pH range of the human skin, with good spreadability and diffusibility. The wound closure rate, as a percentage, was highest at day 3 for a BSNP ointment-treated wound at 22.77 ± 1.60%, while in an untreated control the rate was 10.99 ± 1.74%, for Betadine 14.73 ± 2.36% and for Soframycin 18.55 ± 1.37%, compared with day 0. A similar pattern of wound closure rate was found at days 7 and 11. The antibacterial activity of BSNP was evaluated against wound-infection-causing bacteria Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli by the agar diffusion method. The total bacterial counts in the wound area were enumerated by the colony forming unit method. The lowest number of bacterial counts was found in the BSNP-treated wound compared with the other groups. BSNP treatment at 7.5% concentration enhanced migration of fibroblasts in a scratch assay. These findings reveal BSNP as an efficient contrivance for wound healing acceleration and as an eco-friendly alternative therapeutic antimicrobial agent.


Subject(s)
Anti-Infective Agents/administration & dosage , Metal Nanoparticles/administration & dosage , Nanomedicine/methods , Silver/administration & dosage , Wound Healing/drug effects , Wound Infection/prevention & control , Wounds and Injuries/drug therapy , Animals , Colony Count, Microbial , Disease Models, Animal , Escherichia coli/isolation & purification , Escherichia coli Infections/prevention & control , Ointments/administration & dosage , Pseudomonas Infections/prevention & control , Pseudomonas aeruginosa/isolation & purification , Rats , Staphylococcal Infections/prevention & control , Staphylococcus aureus/isolation & purification , Treatment Outcome , Wound Infection/drug therapy , Wound Infection/microbiology , Wounds and Injuries/microbiology
20.
Plant Physiol Biochem ; 143: 351-363, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31541990

ABSTRACT

Nutrients are the finite natural resources that are essential for productivity and development of rice and its deficiency causes compromised yield along with reduced immunity against several biotic and abiotic stresses. In this study, the potential of Trichoderma reesei has been investigated as a biofertilizer (BF) to ameliorate nutrient stress in different rice cultivars at physiological, biochemical and molecular levels. The results indicated that cultivar Heena is much more compatible with BF as compared to cultivar Kiran at 50% nutrient limiting condition. Enhancement in physiological attributes and photosynthetic pigments were observed in BF treated Heena seedlings. The localization of biofertilizer in treated roots was further validated by scanning electron micrographs. This result correlated well with the higher levels of Indole acetic acid and Gibberellic acid in biofertilizer treated rice. Similarly, the uptake of micro-nutrients such as Fe, Co, Cu and Mo was found to be 1.4-1.9 fold higher respectively in BF treated Heena seedlings under 50% nutrient deficient condition. Furthermore, different stress ameliorating enzymes Guaiacol peroxidase, Super oxide dismutase, Total Phenolic Content, Phenol Peroxidase, Phenylalanine ammonia lyase and Ascorbate peroxidase in Heena seedlings were also increased by 1.8, 1.4, 1.2, 2.4, 1.2, and 8.3-fold respectively, at 50% nutrient deficient condition. The up-regulation of different micro and macro-nutrients allocation and accumulation; metal tolerance related; auxin synthesis genes in BF treated Heena as compared to 50% nutrient deficient condition was further supported by our findings that the application of biofertilizer efficiently ameliorated the deficiency of nutrients in rice.


Subject(s)
Oryza/metabolism , Oryza/microbiology , Seedlings/metabolism , Seedlings/microbiology , Trichoderma/physiology , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Gibberellins/metabolism , Indoleacetic Acids/metabolism , Peroxidase/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...