Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Angiogenesis ; 27(3): 501-522, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38727966

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by the development of arteriovenous malformations (AVMs) that can result in significant morbidity and mortality. HHT is caused primarily by mutations in bone morphogenetic protein receptors ACVRL1/ALK1, a signaling receptor, or endoglin (ENG), an accessory receptor. Because overexpression of Acvrl1 prevents AVM development in both Acvrl1 and Eng null mice, enhancing ACVRL1 expression may be a promising approach to development of targeted therapies for HHT. Therefore, we sought to understand the molecular mechanism of ACVRL1 regulation. We previously demonstrated in zebrafish embryos that acvrl1 is predominantly expressed in arterial endothelial cells and that expression requires blood flow. Here, we document that flow dependence exhibits regional heterogeneity and that acvrl1 expression is rapidly restored after reinitiation of flow. Furthermore, we find that acvrl1 expression is significantly decreased in mutants that lack the circulating Alk1 ligand, Bmp10, and that, in the absence of flow, intravascular injection of BMP10 or the related ligand, BMP9, restores acvrl1 expression in an Alk1-dependent manner. Using a transgenic acvrl1:egfp reporter line, we find that flow and Bmp10 regulate acvrl1 at the level of transcription. Finally, we observe similar ALK1 ligand-dependent increases in ACVRL1 in human endothelial cells subjected to shear stress. These data suggest that ligand-dependent Alk1 activity acts downstream of blood flow to maintain or enhance acvrl1 expression via a positive feedback mechanism, and that ALK1 activating therapeutics may have dual functionality by increasing both ALK1 signaling flux and ACVRL1 expression.


Subject(s)
Activin Receptors, Type II , Zebrafish , Animals , Zebrafish/embryology , Zebrafish/metabolism , Activin Receptors, Type II/metabolism , Activin Receptors, Type II/genetics , Humans , Mice , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Growth Differentiation Factor 2/metabolism , Growth Differentiation Factor 2/genetics , Telangiectasia, Hereditary Hemorrhagic/metabolism , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Transcription, Genetic , Ligands , Endothelial Cells/metabolism
2.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38328175

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by the development of arteriovenous malformations (AVMs) that can result in significant morbidity and mortality. HHT is caused primarily by mutations in bone morphogenetic protein receptors ACVRL1/ALK1, a signaling receptor, or endoglin (ENG), an accessory receptor. Because overexpression of Acvrl1 prevents AVM development in both Acvrl1 and Eng null mice, enhancing ACVRL1 expression may be a promising approach to development of targeted therapies for HHT. Therefore, we sought to understand the molecular mechanism of ACVRL1 regulation. We previously demonstrated in zebrafish embryos that acvrl1 is predominantly expressed in arterial endothelial cells and that expression requires blood flow. Here, we document that flow dependence exhibits regional heterogeneity and that acvrl1 expression is rapidly restored after reinitiation of flow. Furthermore, we find that acvrl1 expression is significantly decreased in mutants that lack the circulating Alk1 ligand, Bmp10, and that BMP10 microinjection into the vasculature in the absence of flow enhances acvrl1 expression in an Alk1-dependent manner. Using a transgenic acvrl1:egfp reporter line, we find that flow and Bmp10 regulate acvrl1 at the level of transcription. Finally, we observe similar ALK1 ligand-dependent increases in ACVRL1 in human endothelial cells subjected to shear stress. These data suggest that Bmp10 acts downstream of blood flow to maintain or enhance acvrl1 expression via a positive feedback mechanism, and that ALK1 activating therapeutics may have dual functionality by increasing both ALK1 signaling flux and ACVRL1 expression.

3.
Endocr Relat Cancer ; 27(8): T65-T75, 2020 08.
Article in English | MEDLINE | ID: mdl-32106089

ABSTRACT

The Genetic Counseling Working Group from the 16th International Workshop on Multiple Endocrine Neoplasia (MEN 2019) convened to discuss contemporary challenges and opportunities in the area of genetic counseling for individuals and families affected by hereditary endocrine neoplasia syndromes. As healthcare professionals with multidisciplinary training in human genetics, risk assessment, patient education, psychosocial counseling, and research methodology, genetic counselors bring a unique perspective to working toward addressing these challenges and identifying their subsequent opportunities. This Working Group focused on the following broad areas: (1) genetic counseling resources for endocrine neoplasias, (2) candidate gene discovery, (3) implications of increasingly sensitive and expansive genetic testing technologies for both the germline and the tumors, and (4) situating clinical diagnoses for hereditary endocrine neoplasia syndromes in the context of present-day knowledge.


Subject(s)
Endocrine Gland Neoplasms/genetics , Genetic Counseling/methods , Genetic Predisposition to Disease/genetics , Multiple Endocrine Neoplasia/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL