Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (171)2021 05 08.
Article in English | MEDLINE | ID: mdl-34028432

ABSTRACT

For many species, where status is a vital motivator that can affect health, social hierarchies influence behavior. Social hierarchies that include dominant-submissive relationships are common in both animal and human societies. These relationships can be affected by interactions with others and with their environment, making them difficult to analyze in a controlled study. Rather than a simple dominance hierarchy, this formation has a complicated presentation that allows rats to avoid aggression. Status can be stagnant or mutable, and results in complex societal stratifications. Here we describe a complex diving-for-food task to investigate rodent social hierarchy and behavioral interactions. This animal model may allow us to assess the relationship between a wide range of mental illnesses and social organization, as well as to study the effectiveness of therapy on social dysfunction.


Subject(s)
Diving , Aggression , Animals , Behavior, Animal , Food , Hierarchy, Social , Rats , Social Dominance
2.
J Vis Exp ; (164)2020 10 23.
Article in English | MEDLINE | ID: mdl-33165329

ABSTRACT

One of the most common causes of morbidity and mortality worldwide is ischemic stroke. Historically, an animal model used to stimulate ischemic stroke involves middle cerebral artery occlusion (MCAO). Infarct zone, brain edema and blood-brain barrier (BBB) breakdown are measured as parameters that reflect the extent of brain injury after MCAO. A significant limitation to this method is that these measurements are normally obtained in different rat brain samples, leading to ethical and financial burdens due to the large number of rats that need to be euthanized for an appropriate sample size. Here we present a method to accurately assess brain injury following MCAO by measuring infarct zone, brain edema and BBB permeability in the same set of rat brains. This novel technique provides a more efficient way to evaluate the pathophysiology of stroke.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Edema/complications , Brain Edema/metabolism , Brain Infarction/complications , Animals , Disease Models, Animal , Infarction, Middle Cerebral Artery/complications , Male , Permeability , Rats , Rats, Sprague-Dawley
3.
J Vis Exp ; (163)2020 09 26.
Article in English | MEDLINE | ID: mdl-33044445

ABSTRACT

A common technique for inducing stroke in experimental rodent models involves the transient (often denoted as MCAO-t) or permanent (designated as MCAO-p) occlusion of the middle cerebral artery (MCA) using a catheter. This generally accepted technique, however, has some limitations, thereby limiting its extensive use. Stroke induction by this method is often characterized by high variability in the localization and size of the ischemic area, periodical occurrences of hemorrhage, and high death rates. Also, the successful completion of any of the transient or permanent procedures requires expertise and often lasts for about 30 minutes. In this protocol, a laser irradiation technique is presented that can serve as an alternative method for inducing and studying brain injury in rodent models. When compared to rats in the control and MCAO groups, the brain injury by laser induction showed reduced variability in body temperature, infarct volume, brain edema, intracranial hemorrhage, and mortality. Furthermore, the use of a laser-induced injury caused damage to the brain tissues only in the motor cortex unlike in the MCAO experiments where destruction of both the motor cortex and striatal tissues is observed. Findings from this investigation suggest that laser irradiation could serve as an alternative and effective technique for inducing brain injury in the motor cortex. The method also shortens the time for completing the procedure and does not require expert handlers.


Subject(s)
Brain Injuries/etiology , Lasers/adverse effects , Motor Cortex/injuries , Animals , Blood-Brain Barrier/pathology , Body Temperature , Brain Edema/complications , Brain Edema/pathology , Disease Models, Animal , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/pathology , Male , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/complications
4.
J Vis Exp ; (159)2020 05 09.
Article in English | MEDLINE | ID: mdl-32449735

ABSTRACT

Traumatic brain injury (TBI) is a major cause of death and disability. Diffuse axonal injury (DAI) is the predominant mechanism of injury in a large percentage of TBI patients requiring hospitalization. DAI involves widespread axonal damage from shaking, rotation or blast injury, leading to rapid axonal stretch injury and secondary axonal changes that are associated with a long-lasting impact on functional recovery. Historically, experimental models of DAI without focal injury have been difficult to design. Here we validate a simple, reproducible and reliable rodent model of DAI that causes widespread white matter damage without skull fractures or contusions.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Diffuse Axonal Injury/physiopathology , Animals , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley
5.
J Vis Exp ; (158)2020 04 28.
Article in English | MEDLINE | ID: mdl-32420997

ABSTRACT

Acute liver injury (ALI) plays a crucial role in the development of hepatic failure, which is characterized by severe liver dysfunction including complications such as hepatic encephalopathy and impaired protein synthesis. Appropriate animal models are vital to test the mechanism and pathophysiology of ALI and investigate different hepatoprotective strategies. Due to its ability to perform chemical transformations, carbon tetrachloride (CCl4) is widely used in the liver to induce ALI through the formation of reactive oxygen species. CCl4 exposure can be performed intraperitoneally, by inhalation, or through a nasogastric or orogastric tube. Here, we describe a rodent model, in which ALI is induced by CCl4 exposure through an orogastric tube. This method is inexpensive, easily performed, and has minimal hazard risk. The model is highly reproducible and can be widely used to determine the efficacy of potential hepatoprotective strategies and assess markers of liver injury.


Subject(s)
Carbon Tetrachloride/adverse effects , Chemical and Drug Induced Liver Injury/complications , Intubation, Gastrointestinal/instrumentation , Liver/injuries , Acute Disease , Animals , Male , Pyrroles , Rats
6.
Front Neurosci ; 13: 1105, 2019.
Article in English | MEDLINE | ID: mdl-31680838

ABSTRACT

Stroke is a major cause of global morbidity and mortality. Middle cerebral artery occlusion (MCAO) has historically been the most common animal model of simulating ischemic stroke. The extent of neurological injury after MCAO is typically measured by cerebral edema, infarct zone, and blood-brain barrier (BBB) permeability. A significant limitation of these methods is that separate sets of brains must be used for each measurement. Here we examine an alternative method of measuring cerebral edema, infarct zone and BBB permeability following MCAO in the same set of brain samples. Ninety-six rats were randomly divided into three experimental groups. Group 1 (n = 27) was used for the evaluation of infarct zone and brain edema in rats post-MCAO (n = 17) vs. sham-operated controls (n = 10). Group 2 (n = 27) was used for the evaluation of BBB breakdown in rats post-MCAO (n = 15) vs. sham-operated controls (n = 10). In Group 3 (n = 42), all three parameters were measured in the same set of brain slices in rats post-MCAO (n = 26) vs. sham-operated controls (n = 16). The effect of Evans blue on the accuracy of measuring infarct zone by 2,3,5-triphenyltetrazolium chloride (TTC) staining was determined by measuring infarct zone with and without an applied blue filter. The effects of various concentrations of TTC (0, 0.05, 0.35, 0.5, 1, and 2%) on the accuracy of measuring BBB permeability was also assessed. There was an increase in infarct volume (p < 0.01), brain edema (p < 0.01) and BBB breakdown (p < 0.01) in rats following MCAO compared to sham-operated controls, whether measured separately or together in the same set of brain samples. Evans blue had an effect on measuring infarct volume that was minimized by the application of a blue filter on scanned brain slices. There was no difference in the Evans blue extravasation index for the brain tissue samples without TTC compared to brain tissue samples incubated in TTC. Our results demonstrate that measuring cerebral edema, infarct zone and BBB permeability following MCAO can accurately be measured in the same set of brain samples.

7.
Neuropharmacology ; 155: 173-184, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31153808

ABSTRACT

Post-stroke depression (PSD) is a common and serious complication following stroke. Both stroke and depression have independently been associated with pathologically elevated glutamate levels in the brain's extra-cerebral fluid (ECF). Here we evaluate an alternative therapeutic approach to PSD with pyruvate. Rats were randomly assigned into one of 3 groups: Middle Cerebral Artery Occlusion (MCAO) plus pyruvate treatment, MCAO plus placebo treatment, and sham operated rats. Post-MCAO depressive and anxiety-like behavior was assessed, along with neurological status, brain infarct zone, brain edema, blood brain barrier (BBB) breakdown, cerebrospinal fluid and blood glutamate levels. Anxiety-like behavior and levels of blood alanine and α-ketoglutarate were measured in naïve rats treated with pyruvate, as a control. Post-stroke neurological deficit with concurrent elevation in glutamate levels were demonstrated, with peak glutamate levels 24 h after MCAO. Treatment with pyruvate led to reduced glutamate levels 24 h after MCAO and improved neurologic recovery. Pyruvate treatment reduced lesion volume, brain edema and the extent of BBB permeability 24 h post-MCAO. Naïve rats treated with pyruvate showed increased levels of α-ketoglutarate. Rats demonstrated post-stroke depressive behavior that was improved by the administration of pyruvate. There was less anxiety-like behavior in post-stroke rats treated with placebo in comparison to the post-stroke rats treated with pyruvate or sham operated rats. Glutamate scavenging with pyruvate appears to be an effective as a method in providing neuroprotection following stroke and as a therapeutic option for the treatment of PSD by reducing the consequent elevations in CNS glutamate levels.


Subject(s)
Depression/blood , Depression/drug therapy , Pyruvic Acid/therapeutic use , Stroke/blood , Stroke/drug therapy , Animals , Depression/psychology , Glutamic Acid/blood , Infarction, Middle Cerebral Artery/blood , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/psychology , Male , Random Allocation , Rats , Rats, Sprague-Dawley , Stroke/psychology
8.
J Vis Exp ; (147)2019 05 22.
Article in English | MEDLINE | ID: mdl-31180343

ABSTRACT

Post-stroke depression (PSD) is the most recurrent of all psychiatric complications resulting from an ischemic stroke. A greater majority (about 60%) of all ischemic stroke patients suffer from PSD, a disorder considered to be an ischemic stroke-related precursor for increased death and degradation in health. The pathophysiology of PSD is still obscure. To study the mechanism of development and occurrence of PSD further, and to find out a therapy, we attempted to develop a new protocol that requires occluding the middle cerebral artery (MCA) via the internal carotid artery (ICA) in rats. This protocol describes a model of PSD induced in rats through the middle cerebral artery occlusion (MCAO). Also used in the experiment are the Porsolt forced swim test and the sucrose preference test to confirm and evaluate the depressive mood of the rats under investigation. Rather than inserting the catheter through the external carotid artery (ECA), as stipulated for the original procedure, this MCAO technique has the monofilament passing directly through the ICA. This MCAO technique was developed a few years ago and leads to a reduction in mortality and variability. It is generally accepted that the criteria used are preferred in the selection of biological models. The data obtained with this protocol show that this model of MCAO could be a way of inducing PSD in rats and could potentially lead to the understanding of the pathophysiology and the future development of new drugs and other neuroprotective agents.


Subject(s)
Depression/etiology , Infarction, Middle Cerebral Artery/complications , Middle Cerebral Artery/physiopathology , Animals , Carotid Artery Injuries/physiopathology , Depression/psychology , Disease Models, Animal , Food Preferences/psychology , Infarction, Middle Cerebral Artery/physiopathology , Male , Rats , Rats, Sprague-Dawley , Swimming/psychology
9.
Biol Proced Online ; 21: 9, 2019.
Article in English | MEDLINE | ID: mdl-31130825

ABSTRACT

BACKGROUND: A common experimental rodent model for stroke includes induction by a technique in which middle cerebral artery is transiently (MCAO-t) or permanently (MCAO-p) occluded by catheterization. However, this model has prominent disadvantages which consist of the high variability of localization and size of the ischemic area, cases of intracranial hemorrhage and high mortality. Furthermore, the duration of a single MCAO operation takes about thirty minutes and requires highly trained staff. In this article, we propose an alternative method, which is based on laser-induced stroke in the motor cortex. In our research, we compared the original MCAO-p and MCAO-t models and a novel laser model. RESULTS: Compared with the impact of original MCAO-p and MCAO-t technique on brain tissue, the minimally invasive laser model demonstrated a decrease in: variability in body temperature, percent of infarcted volume, blood brain barrier breakdown and brain edema, as well as a prominent decrease of mortality and intracranial hemorrhage. Among other findings of this article, it can be noted that damage to the brain tissue in laser groups occurred only in the region of the motor cortex, without involving the striatal area. CONCLUSIONS: The data presented in this paper show that the model of laser irradiation can serve as an effective method of inducible brain cortical infarction and may lead to a better understanding of the pathophysiology of ischemic stroke and the future development of new drugs and other neuro-protective agents.

10.
Can J Neurol Sci ; 45(4): 451-461, 2018 07.
Article in English | MEDLINE | ID: mdl-29880078

ABSTRACT

BACKGROUND: Post-stroke depression (PSD) is the most frequent psychiatric complication following ischemic stroke. It affects up to 60% of all patients and is associated with increased morbidity and mortality following ischemic stroke. The pathophysiology of PSD remains elusive and appears to be multifactorial, rather than "purely" biological or psychosocial in origin. Thus, valid animal models of PSD would contribute to the study of the etiology (and treatment) of this disorder. METHODS: The present study depicts a rat model for PSD, using middle cerebral artery occlusion (MCAO). The two-way shuttle avoidance task, Porsolt forced-swim test, and sucrose preference test were employed to assess any depression-like behavior. Localized brain expressions of brain-derived neurotrophic factor (BDNF) protein levels were evaluated to examine the possible involvement of the brain neuronal plasticity in the observed behavioral syndrome. The raw data were subjected to unsupervised fuzzy clustering (UFC) algorithms to assess the sensitivity of bio-behavioral measures indicative of depressive symptoms post MCAO. RESULTS: About 56% of the rats developed significant depressive-like behavioral disruptions as a result of MCAO compared with 4% in the sham-operated control rats. A pattern of a depressive-like behavioral response was common to all affected MCAO animals, characterized by significantly more escape failures and reduced number of total avoidance shuttles, a significant elevation in immobility duration, and reduced sucrose preference. Significant downregulations of BDNF protein levels in the hippocampal sub-regions, frontal cortex, and hypothalamus were observed in all affected MCAO animals. CONCLUSION: The UFC analysis supports the behavioral analysis and thus, lends validity to our results.


Subject(s)
Avoidance Learning/physiology , Depression/metabolism , Depression/physiopathology , Exploratory Behavior/physiology , Animals , Brain/metabolism , Brain Infarction/etiology , Brain-Derived Neurotrophic Factor/metabolism , Cluster Analysis , Depression/etiology , Disease Models, Animal , Food Preferences/psychology , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/pathology , Male , Neurologic Examination , Rats , Rats, Sprague-Dawley , Statistics, Nonparametric , Sucrose/administration & dosage , Swimming/psychology
11.
J Vis Exp ; (132)2018 02 22.
Article in English | MEDLINE | ID: mdl-29553503

ABSTRACT

Contagious depression is a phenomenon that is yet to be fully recognized and this stems from insufficient material on the subject. At the moment, there is no existing format for studying the mechanism of action, prevention, containment, and treatment of contagious depression. The purpose of this study, therefore, was to establish the first animal model of contagious depression. Healthy rats can contract depressive behaviors if exposed to depressed rats. Depression is induced in rats by subjecting them to several manipulations of chronic unpredictable stress (CUS) over 5 weeks, as described in the protocol. A successful sucrose preference test confirmed the development of depression in the rats. The CUS-exposed rats were then caged with naïve rats from the contagion group (1 naïve rat/2 depressed rats in a cage) for an additional 5 weeks. 30 social groups were created from the combination of CUS-exposed rats and naïve rats. This proposed depression-contagion protocol in animals consists mainly of cohabiting CUS-exposed and healthy rats for 5 weeks. To ensure that this method works, a series of tests are carried out - first, the sucrose preference test upon inducing depression to rats, then, the sucrose preference test, alongside the open field and forced-swim tests at the end of the cohabitation period. Throughout the experiment, rats are given tags and are always returned to their cages after each test. A few limitations to this method are the weak differences recorded between the experimental and control groups in the sucrose preference test and the irreversible traumatic outcome of the forced swim test. These may be worth considering for suitability before any future application of the protocol. Nonetheless, following the experiment, naïve rats developed contagion depression after 5 weeks of sharing the same cage with the CUS-exposed rats.


Subject(s)
Behavior, Animal/physiology , Depressive Disorder/psychology , Stress, Psychological/psychology , Animals , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley
12.
J Neurosurg Anesthesiol ; 25(2): 174-83, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23295267

ABSTRACT

BACKGROUND: The exact mechanism of hypothermia-induced neuroprotection has not been determined yet; however, we hypothesized that it may be mediated by a blood glutamate-scavenging effect. Here, we examine the effect of hypothermic conditions (mild, moderate, and deep) on blood glutamate levels in naive rats. To identify the mechanism of hypothermia-induced glutamate reduction, we also measured concentrations of glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT), the primary regulators of glutamate concentration in blood. METHODS: Rats were anesthetized with isoflurane, and their rectal temperature was maintained for 6 hours at 36 to 37°C, 33 to 36°C, 30 to 32°C, 18 to 22°C, or was not maintained artificially. At 6 hours, active cooling was discontinued and rats were allowed to rewarm. There were 12 rats in each group for a total of 60 rats. Blood samples were drawn at 0, 3, 6, 12, 24, and 48 hours for the determination of blood glutamate, GOT, and GPT levels. RESULTS: A strong correlation between body temperature and blood glutamate levels was observed (P<0.001). Mild (33 to 36°C) and moderate (30 to 32°C) hypothermia led to reduced blood glutamate levels (P<0.001). Deep hypothermia (18 to 22°C) was associated with significant elevations in blood glutamate levels (P<0.001). Hypothermia, irrespective of the degree, led to elevations in GOT in plasma (P<0.001). CONCLUSIONS: Mild and moderate hypothermia led to a reduction in blood glutamate levels in rats, whereas deep hypothermia was associated with a significant elevation in blood glutamate levels. We further demonstrated an elevation of GOT and GPT levels, supporting their involvement in reducing blood glutamate by the conversion of glutamate to 2-ketoglutarate. We suggest that the neuroprotective properties of hypothermia may be partially because of a blood glutamate-scavenging mechanism.


Subject(s)
Glutamic Acid/blood , Hypothermia, Induced , Alanine Transaminase/blood , Anesthesia, General , Anesthetics, Inhalation , Animals , Aspartate Aminotransferases/blood , Body Temperature/drug effects , Body Temperature/physiology , Isoflurane , Male , Rats , Rats, Sprague-Dawley
13.
Brain Res ; 1491: 109-16, 2013 Jan 23.
Article in English | MEDLINE | ID: mdl-23123210

ABSTRACT

Despite significant advancements in the understanding of the pathophysiological mechanisms of subarachnoid hemorrhage (SAH), little is known about the emotional consequences. The primary goal of this study was to describe the locomotor and behavioral patterns in rats following both a single-injection and double-injection model of SAH. In 48 rats, SAH was induced by injecting 0.3 ml of autologous arterial blood into the cisterna magnum (single-hemorrhagic model). In 24 of these rats, post-SAH vasospasm was induced by a repeated injection of blood into the cisterna magnum 24h later (double-hemorrhagic model). In 24 additional rats, 0.3 ml of saline was injected into the cisterna magnum (sham group). Neurological performance was assessed at 24, 48 h, 1, 2 and 3 weeks after SAH. Four behavioral tests were performed for 3 weeks after SAH for the duration of 6 consequent days, in the following order: open field test, sucrose preference test, elevated plus maze test and forced swimming test. Following both, a single and double-hemorrhagic models of SAH, rats were found to have significant behavioral abnormalities on the open field test, sucrose preference test, elevated plus maze test, and forced swimming test. A more prominent disability was found in rats that underwent the double-hemorrhagic model of SAH than rats that underwent the single-hemorrhagic model. Both a single and double injection model of rats SAH are associated with significant behavioral disturbances including locomotor abnormalities, depressive behavior and increased anxiety, even as early as 3 weeks after SAH.


Subject(s)
Behavior, Animal/physiology , Nervous System Diseases/pathology , Subarachnoid Hemorrhage/pathology , Subarachnoid Hemorrhage/psychology , Animals , Anxiety/psychology , Blood Transfusion , Cisterna Magna/physiology , Data Interpretation, Statistical , Depression/psychology , Exploratory Behavior/physiology , Food Preferences/physiology , Food Preferences/psychology , Locomotion/physiology , Male , Motor Activity/physiology , Rats , Rats, Sprague-Dawley , Sucrose , Swimming/psychology , Vasospasm, Intracranial/etiology , Vasospasm, Intracranial/psychology
14.
Acta Neurobiol Exp (Wars) ; 72(4): 385-96, 2012.
Article in English | MEDLINE | ID: mdl-23377269

ABSTRACT

Excessive concentrations of L-glutamate (glutamate) have been found to posses neurotoxic properties. This study investigates how stress induced by strong physical exercise effects blood glutamate, 2-ketoglutarate, Alanine aminotransferase (ALT) and Aspartate Aminotransferase (AST) levels. The relationship between muscle damage caused by strong physical exercise and blood glutamate levels was also examined. Twenty-two healthy volunteers engaged in intense veloergometry ("spinning") for a duration of 60 minutes. Two 10 minute peaks of extremely intense exercise were performed at 10 minutes and 50 minutes after the start of exercise. After 60 minutes of exercise, volunteers were monitored for an additional 180 minutes in resting conditions. Blood samples for determination of glutamate and 2-ketoglutarate levels were collected prior to exercise and then every 30 min for entire experiment. Blood samples were also taken at those time points to measure glutamate, 2-ketoglutarate, AST, ALT, creatine phosphokinase (CPK), myoglobin, lactate and venous blood gas levels. Blood glutamate levels were significantly elevated throughout the exercise session (P less than 0.001) and then returned to baseline levels at the cessation of exercise. 2-ketoglutarate, a product of glutamate metabolism, reached significantly elevated levels at 30 minutes (P less than 0.01) from the start of exercise and remained elevated up to 240 minutes post exercise initiation (P less than 0.001). AST and ALT levels were elevated at 60 minutes when compared to baseline. AST levels remained elevated at 240 minutes, unlike ALT levels which returned to baseline values at 240 minutes. Strong physical exercise leads to a significant elevation in blood glutamate, most likely as a result of skeletal muscle damage. 2-ketoglutarate was also found to be elevated for long periods of time, reflecting an ongoing process of glutamate breakdown. Elevated concentrations of AST and ALT in plasma reflect the importance of these enzymes in the maintenance of stable blood glutamate concentrations.


Subject(s)
Exercise , Glutamic Acid/blood , Ketoglutaric Acids/blood , Adult , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Blood Gas Analysis , Blood Glucose , Blood Pressure/physiology , Body Temperature , Heart Rate/physiology , Humans , Lactic Acid/blood , Male , Myoglobin/blood , Time Factors , Young Adult
15.
Eur J Neurosci ; 34(9): 1432-41, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21936878

ABSTRACT

In previous studies, we have shown that by increasing the brain-to-blood glutamate efflux upon scavenging blood glutamate with either oxaloacetate or pyruvate, one achieves highly significant neuroprotection particularly in the context of traumatic brain injury. The current study examines, for the first time, how the blood glutamate scavenging properties of glutamate-pyruvate transaminase (GPT), alone or in combination with pyruvate, may contribute to the spectrum of its neuroprotective mechanisms and improve the outcome of rats exposed to brain ischemia, as they do after head trauma. Rats that were exposed to permanent middle cerebral artery occlusion (MCAO) and treated with intravenous 250 mg/kg pyruvate had a smaller volume of infarction and reduced brain edema, resulting in an improved neurological outcome and reduced mortality compared to control rats treated with saline. Intravenous pyruvate at the low dose of 31.3 mg/kg did not demonstrate any neuroprotection. However, when combined with 0.6 mg/kg of GPT there was a similar neuroprotection observed as seen with pyruvate at 250 mg/kg. Animals treated with 1.69 g/kg glutamate had a worse neurological outcome and a larger extent of brain edema. The decrease in mortality, infarcted brain volume and edema, as well as the improved neurological outcome following MCAO, was correlated with a decrease in blood glutamate levels. We therefore suggest that the blood glutamate scavenging activity of GPT and pyruvate contributes to the spectrum of their neuroprotective mechanisms and may serve as a new neuroprotective strategy for the treatment of ischemic stroke.


Subject(s)
Glutamic Acid/blood , Infarction, Middle Cerebral Artery/blood , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/administration & dosage , Pyruvic Acid/administration & dosage , Animals , Aspartate Aminotransferases/therapeutic use , Brain Edema/etiology , Brain Edema/prevention & control , Brain Infarction/etiology , Brain Infarction/pathology , Brain Infarction/prevention & control , Disease Models, Animal , Dose-Response Relationship, Drug , Infarction, Middle Cerebral Artery/complications , Male , Motor Activity/drug effects , Neurologic Examination , Oxaloacetic Acid/therapeutic use , Random Allocation , Rats , Rats, Sprague-Dawley , Statistics, Nonparametric , Time Factors
16.
J Neurosurg Anesthesiol ; 23(4): 323-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21836527

ABSTRACT

BACKGROUND: Elevated levels of glutamate in brain fluids, in the context of several neurodegenerative conditions, are associated with a worsened neurological outcome. Because there is a clear relationship between brain glutamate levels and glutamate levels in the blood, and an association of the latter with stress, the purpose of this study was to investigate the effects of glucose, insulin, and glucagon on rat blood glutamate levels. METHODS: Rats received either 1 mL/100 g of rat body weight (BW) intravenous isotonic saline (control), 150 mg/1 mL/100 g BW intravenous glucose, 75 mg/1 mL/100 g BW intravenous glutamate, 50 g/100 g BW intraparitoneal glucagon, or 0.2 UI/100 g BW intraparitoneal insulin. Blood samples were subsequently drawn at 0, 30, 60, 90, and 120 minutes for determination of blood glutamate and glucose levels. RESULTS: We observed a significant decrease in blood glutamate levels at 30 minutes after injection of glucose (P<0.05), at 30 and 60 minutes after injection of insulin (P<0.05), and at 90 and 120 minutes after injection of glucagon. Plasma glucose levels were elevated after infusion of glutamate and glucose but were decreased after injection of insulin. CONCLUSIONS: The results of this study demonstrate that glucose, insulin, and glucagon significantly reduce blood glutamate levels. The effect of insulin is immediate and transient, whereas the effect of glucagon is delayed but longer lasting, suggesting that the sensitivity of pancreatic glucagon and insulin-secreting cells to glutamate is dependent on glucose concentration. The results of this study provide insight into blood glutamate homeostasis and may assist in the implementation of new therapies for brain neuroprotection from excess glutamate.


Subject(s)
Blood Glucose/metabolism , Glucagon/pharmacology , Glucose/pharmacology , Glutamic Acid/pharmacology , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Animals , Injections, Intraperitoneal , Injections, Intravenous , Insulin/metabolism , Male , Pancreas/drug effects , Rats , Rats, Sprague-Dawley
17.
Biol Reprod ; 84(3): 581-6, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20980684

ABSTRACT

The gonadal steroids estrogen and progesterone have been shown to have neuroprotective properties against various neurodegenerative conditions. Excessive concentrations of glutamate have been found to exert neurotoxic properties. We hypothesize that estrogen and progesterone provide neuroprotection by the autoregulation of blood and brain glutamate levels. Venous blood samples (10 ml) were taken from 31 men and 45 women to determine blood glutamate, estrogen, progesterone, glucose, glutamate-pyruvate transaminase (GPT), and glutamate-oxaloacetate transaminase (GOT) levels, collected on Days 1, 7, 12, and 21 of the female participants' menstrual cycle. Blood glutamate concentrations were higher in men than in women at the start of menstruation (P < 0.05). Blood glutamate levels in women decreased significantly on Days 7 (P < 0.01), 12 (P < 0.001), and 21 (P < 0.001) in comparison with blood glutamate levels on Day 1. There was a significant decrease in blood glutamate levels on Days 12 (P < 0.001) and 21 (P < 0.001) in comparison with blood glutamate levels on Day 7. Furthermore, there was an increase in blood glutamate levels on Day 21 compared with Day 12 (P < 0.05). In women, there were elevated levels of estrogen on Days 7 (P < 0.05), 12, and 21 (P < 0.001), and elevated levels of progesterone on Days 12 and 21 (P < 0.001). There were no differences between men and women with respect to blood glucose concentrations. Concentrations of GOT (P < 0.05) and GPT (P < 0.001) were significantly higher in men than in women during the entire cycle. The results of this study demonstrate that blood glutamate levels are inversely correlated to levels of plasma estrogen and progesterone.


Subject(s)
Estrogens/pharmacology , Glutamic Acid/blood , Menstrual Cycle/blood , Progesterone/pharmacology , Adolescent , Adult , Blood Glucose/analysis , Estrogens/blood , Female , Humans , Male , Menstrual Cycle/drug effects , Middle Aged , Osmolar Concentration , Progesterone/blood , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL