Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Dev Psychobiol ; 66(7): e22543, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39205500

ABSTRACT

Early life seizures are associated with a variety of behavioral comorbidities. Among the most prevalent of these are deficits in communication. Auditory communicative behaviors in mice, known as ultrasonic vocalizations (USVs), can be used to assess potential treatments. Agomelatine is a melatonin agonist that effectively reduces behavioral comorbidities of seizures in adults; however, its ability to attenuate seizure-induced communicative deficits in neonates is unknown. To address this, we administered C57 mice either saline or kainic acid (KA) on postnatal day (PD) 10. The mice then received either agomelatine or saline 1-h post-status epilepticus. On PD 11, we assessed the quantity of USVs produced, the duration, peak frequency, fundamental frequency, and amplitude of the vocalizations, as well as the call type utilization. We found that KA increased vocal production and reduced USV variability relative to controls. KA also increased USV duration and amplitude and significantly altered the types of calls produced. Agomelatine did not attenuate any of the deficits. Our study is the first to assess agomelatine's efficacy to correct USVs and thus provides an important point of context to the literature, indicating that despite its high therapeutic efficacy to attenuate other behavioral comorbidities of seizures, agomelatine's ability to correct neonatal communicative deficits is limited.


Subject(s)
Acetamides , Kainic Acid , Mice, Inbred C57BL , Vocalization, Animal , Animals , Kainic Acid/pharmacology , Vocalization, Animal/drug effects , Acetamides/pharmacology , Mice , Male , Female , Animals, Newborn , Status Epilepticus/drug therapy , Status Epilepticus/chemically induced , Disease Models, Animal , Seizures/drug therapy , Seizures/chemically induced , Naphthalenes
2.
Epilepsy Res ; 206: 107440, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39213710

ABSTRACT

Seizures induce hippocampal subregion dependent enhancements in microglia/macrophage phagocytosis and cytokine release that may contribute to the development of epilepsy. As a model of hyperactive mTOR induced epilepsy, neuronal subset specific phosphatase and tensin homolog (NS-Pten) knockout (KO) mice exhibit hyperactive mTOR signaling in the hippocampus, seizures that progress with age, and enhanced hippocampal microglia/macrophage activation. However, it is unknown where microglia/macrophages are most active within the hippocampus of NS-Pten KO mice. We quantified the density of IBA1 positive microglia/macrophages in the CA1, CA2/3, and dentate gyrus of NS-Pten KO and wildtype (WT) male and female mice at 4, 10, and 15 weeks of age. NS-Pten KO mice exhibited an overall increase in the number of IBA1 positive microglia/macrophages in each subregion and in the entire hippocampus. After accounting for differences in size, the whole hippocampus of NS-Pten KO mice still exhibited an increased density of IBA1 positive microglia/macrophages. Subregion analyses showed that this increase was restricted to the dentate gyrus of both male and female NS-Pten KO mice and to the CA1 of male NS-Pten KO mice. These data suggest enhanced microglia/macrophage activity may occur in the NS-Pten KO mice in a hippocampal subregion and sex-dependent manner. Future work should seek to determine whether these region-specific increases in microgliosis play a role in the progression of epilepsy in this model.


Subject(s)
Hippocampus , Macrophages , Microglia , PTEN Phosphohydrolase , Sex Characteristics , Animals , Female , Male , Mice , Calcium-Binding Proteins/metabolism , Cell Count , Hippocampus/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/metabolism , Microglia/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/metabolism
3.
Neurotoxicol Teratol ; 98: 107180, 2023.
Article in English | MEDLINE | ID: mdl-37160210

ABSTRACT

Several studies have begun to demonstrate the possible cognitive and physiological benefits of a fortified vitamin D diet. However, the behavioral effects of a high vitamin D fortified diet during adolescence has not been fully explored. In the present study, a 4-week vitamin D fortified diet (20,000 IU/Kg) compared to controls (1500 IU/Kg) was administered during the juvenile (4 weeks old) or early adult period (8 weeks old) in C57BL/6 J mice to investigate the effects of fortification on cognition, behavior, and their bone phenotype. After 4 weeks on the diet, vitamin D-treated and control groups underwent a 4-week battery of behavioral tests while remaining on their respective diets. We found that a fortified diet affected behavior in both an age- and sex-specific manner. When vitamin D was administered to juveniles, both sexes displayed impaired habituation to a loud tone. However, females also presented with impaired prepulse inhibition compared to female controls. In the adult treated group, the fortified diet increased only time spent in the open field and had no effect on anxiety-like behavior in the elevated plus maze. Juvenile mice treated with a high vitamin D fortified diet showed a decrease in the total volume compared to the control group in the proximal metaphysis and midshaft region of their femur. There were no differences in bone measurements for mice treated during adulthood. Overall, our results suggest that the juvenile period is a more sensitive time point to the startle response and bone effects of a diet supplemented with high vitamin D, while adults exhibited alterations in locomotive behavior.


Subject(s)
Prepulse Inhibition , Vitamin D , Male , Female , Mice , Animals , Mice, Inbred C57BL , Vitamin D/pharmacology , Reflex, Startle , Dietary Supplements
4.
Behav Brain Res ; 410: 113317, 2021 07 23.
Article in English | MEDLINE | ID: mdl-33910029

ABSTRACT

Epilepsy is one of the most common neurological disorders, with individuals having an increased susceptibility of seizures in the first few years of life, making children at risk of developing a multitude of cognitive and behavioral comorbidities throughout development. The present study examined the role of PI3K/Akt/mTOR pathway activity and neuroinflammatory signaling in the development of autistic-like behavior following seizures in the neonatal period. Male and female C57BL/6J mice were administered 3 flurothyl seizures on postnatal (PD) 10, followed by administration of minocycline, the mTOR inhibitor rapamycin, or a combined treatment of both therapeutics. On PD12, isolation-induced ultrasonic vocalizations (USVs) of mice were examined to determine the impact of seizures and treatment on communicative behaviors, a component of the autistic-like phenotype. Seizures on PD10 increased the quantity of USVs in female mice and reduced the amount of complex call types emitted in males compared to controls. Inhibition of mTOR with rapamycin significantly reduced the quantity and duration of USVs in both sexes. Changes in USVs were associated with increases in mTOR and astrocyte levels in male mice, however, three PD10 seizures did not result in enhanced proinflammatory cytokine expression in either sex. Beyond inhibition of mTOR activity by rapamycin, both therapeutics did not demonstrate beneficial effects. These findings emphasize the importance of differences that may exist across preclinical seizure models, as three flurothyl seizures did not induce as drastic of changes in mTOR activity or inflammation as observed in other rodent models.


Subject(s)
Epilepsy , Immunologic Factors/pharmacology , MTOR Inhibitors/pharmacology , Minocycline/pharmacology , Seizures , Sirolimus/pharmacology , Vocalization, Animal/drug effects , Animals , Convulsants/pharmacology , Disease Models, Animal , Epilepsy/chemically induced , Epilepsy/immunology , Epilepsy/metabolism , Epilepsy/physiopathology , Female , Flurothyl/pharmacology , Male , Mice , Mice, Inbred C57BL , Seizures/chemically induced , Seizures/immunology , Seizures/metabolism , Seizures/physiopathology , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL