Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 353: 141510, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401861

ABSTRACT

Biotite, a phyllosilicate mineral, possesses significant potential for cesium (Cs) adsorption owing to its negative surface charge, specific surface area (SSA), and frayed edge sites (FES). Notably, FES are known to play an important role in the adsorption of Cs. The objectives of this study were to investigate the Cs adsorption capacity and behavior of artificially weathered biotite and identify mineralogical characteristics for the development of an eco-friendly geologically-based Cs adsorbent. Through various analyses, it was confirmed that the FES of biotite was mainly formed by mineral structural distortion during artificial weathering. The Cs adsorption capacity is improved by approximately 39% (from 20.53 to 28.63 mg g-1) when FES are formed in biotite through artificial weathering using a low-concentration acidic solution mixed with hydrogen peroxide (H2O2). Especially, the Cs selectivity in Cs-containing seawater, including high concentrations of cations and organic matter, was significantly enhanced from 203.2 to 1707.6 mL g-1, an increase in removal efficiency from 49.5 to 89.2%. These results indicate that FES of artificially weathered biotite play an essential role in Cs adsorption. Therefore, this simple and economical weathering method, which uses a low-concentration acidic solution mixed with H2O2, can be applied to natural minerals for use as Cs adsorbents.


Subject(s)
Aluminum Silicates , Cesium , Hydrogen Peroxide , Cesium/chemistry , Minerals/chemistry , Ferrous Compounds/chemistry , Adsorption
2.
Front Microbiol ; 12: 721478, 2021.
Article in English | MEDLINE | ID: mdl-34322113

ABSTRACT

[This corrects the article DOI: 10.3389/fmicb.2021.646748.].

3.
Sci Rep ; 11(1): 15362, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34321553

ABSTRACT

Opaline mudstone (OM) composed of opal-CT (SiO2·nH2O) has high potential use as a cesium (Cs) adsorbent, due to its high specific surface area (SSA). The objective of this study was to investigate the Cs adsorption capacity of chemically activated OM and the adsorption mechanism based on its physico-chemical properties. We used acid- and base-activation methods for the surface modification of OM. Both acid- and base- activations highly increased the specific surface area (SSA) of OM, however, the base-activation decreased the zeta potential value more (- 16.67 mV), compared to the effects of acid-activation (- 6.60 mV) or non-activation method (- 6.66 mV). Base-activated OM showed higher Cs adsorption capacity (32.14 mg/g) than the others (acid: 12.22 mg/g, non: 15.47 mg/g). These results indicate that base-activation generates pH-dependent negative charge, which facilitates Cs adsorption via electrostatic attraction. In terms of the dynamic atomic behavior, Cs cation adsorbed on the OM mainly exist in the form of inner-sphere complexes (IS) containing minor amounts of water molecules. Consequently, the OM can be used as an effective Cs adsorbent via base-activation as an economical and simple modification method.

4.
Front Microbiol ; 12: 646748, 2021.
Article in English | MEDLINE | ID: mdl-33897660

ABSTRACT

Microbially induced calcium carbonate precipitation (MICP) is a bio-geochemical process involving calcium carbonate precipitation and possible co-precipitation of other metals. The study investigated the extent to which a urease-positive bacterium, Sporosarcina pasteurii, can tolerate a range of metals (e.g., Cu, Zn, Pb, Cd, and Sr), and analyzed the role of calcium carbonate bioprecipitation in eliminating these divalent toxicants from aqueous solutions. The experiments using S. pasteurii were performed aerobically in growth media including urea, CaCl2 (30 mM) and different metals such Cu, Zn, Pb, and Cd (0.01 ∼ 1 mM), and Sr (1 ∼ 30 mM). Microbial growth and urea degradation led to an increase in pH and OD600, facilitating the precipitation of calcium carbonate. The metal types and concentrations contributed to the mineralogy of various calcium carbonates precipitated and differences in metal removal rates. Pb and Sr showed more than 99% removal efficiency, whereas Cu, Zn, and Cd showed a low removal efficiency of 30∼60% at a low concentration of 0.05 mM or less. Thus the removal efficiency of metal ions during MICP varied with the types and concentrations of divalent cations. The MICP in the presence of divalent metals also affected the mineralogical properties such as carbonate mineralogy, shape, and crystallinity.

5.
J Hazard Mater ; 401: 123319, 2021 01 05.
Article in English | MEDLINE | ID: mdl-32634660

ABSTRACT

Biotite and illite have excellent cesium (Cs) adsorption capacity due to their negative charges in addition to adsorption sites of the planar, interlayer, and frayed edge sites (FES). The aim of this study is to investigate the Cs adsorption capacity using acid- and base-activated biotite and illite based on their mineralogical characteristics. The acid-activated biotite and base-activated illite exhibited high Cs removal efficiency from the low-level Cs-containing DI water (97.5 % and 97.3 %, respectively). The acid-activation of biotite increased the specific surface area (SSA, 12.08 → 43.04 m2/g), Fe(III)/Fe(II) ratio (0.56 → 0.76), and wedge zone d-spacing (1.017 → 1.065 nm), while the zeta potential (-4.06 → -4.82 mV) decreased. The base-activation of illite resulted to a decrease in the SSA (22.14 → 18.49 m2/g), zeta potential (-7.68 → -31.64 mV), and Fe(III)/Fe(II) ratio (0.92 → 0.79). However, only acid-activated biotite appeared to have a high capacity of Cs removal from Cs-containing seawater (73.9 %; base-activated illite: 26.1 %). These results indicate that the FES of biotite owing to acid-activation showed better results in regards to Cs adsorption as compared to the pH-dependent negative charges of the base-activated illite.

SELECTION OF CITATIONS
SEARCH DETAIL
...