Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biotechnol Biofuels Bioprod ; 17(1): 77, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835059

ABSTRACT

Plastic consumption has increased globally, and environmental issues associated with it have only gotten more severe; as a result, the search for environmentally friendly alternatives has intensified. Polyhydroxyalkanoates (PHA), as biopolymers produced by microalgae, might be an excellent option; however, large-scale production is a relevant barrier that hinders their application. Recently, innovative materials such as carbon dots (CDs) have been explored to enhance PHA production sustainably. This study added green synthesized multi-doped CDs to Scenedesmus sp. microalgae cultures to improve PHA production. Prickly pear was selected as the carbon precursor for the hydrothermally synthesized CDs doped with nitrogen, phosphorous, and nitrogen-phosphorous elements. CDs were characterized by different techniques, such as FTIR, SEM, ζ potential, UV-Vis, and XRD. They exhibited a semi-crystalline structure with high concentrations of carboxylic groups on their surface and other elements, such as copper and phosphorus. A medium without nitrogen and phosphorous was used as a control to compare CDs-enriched mediums. Cultures regarding biomass growth, carbohydrates, lipids, proteins, and PHA content were analyzed. The obtained results demonstrated that CDs-enriched cultures produced higher content of biomass and PHA; CDs-enriched cultures presented an increase of 26.9% in PHA concentration and an increase of 32% in terms of cell growth compared to the standard cultures.

2.
Mar Drugs ; 21(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37623731

ABSTRACT

The production of biomolecules by microalgae has a wide range of applications in the development of various materials and products, such as biodiesel, food supplements, and cosmetics. Microalgae biomass can be produced using waste and in a smaller space than other types of crops (e.g., soja, corn), which shows microalgae's great potential as a source of biomass. Among the produced biomolecules of greatest interest are carbohydrates, proteins, lipids, and fatty acids. In this study, the production of these biomolecules was determined in two strains of microalgae (Chlamydomonas reinhardtii and Chlorella vulgaris) when exposed to different concentrations of nitrogen, phosphorus, and sulfur. Results show a significant microalgal growth (3.69 g L-1) and carbohydrates (163 mg g-1) increase in C. reinhardtii under low nitrogen concentration. Also, higher lipids content was produced under low sulfur concentration (246 mg g-1). It was observed that sulfur variation could affect in a negative way proteins production in C. reinhardtii culture. In the case of C. vulgaris, a higher biomass production was obtained in the standard culture medium (1.37 g L-1), and under a low-phosphorus condition, C. vulgaris produced a higher lipids concentration (248 mg g-1). It was observed that a low concentration of nitrogen had a better effect on the accumulation of fatty acid methyl esters (FAMEs) (C16-C18) in both microalgae. These results lead us to visualize the effects that the variation in macronutrients can have on the growth of microalgae and their possible utility for the production of microalgae-based subproducts.


Subject(s)
Chlamydomonas reinhardtii , Chlorella vulgaris , Microalgae , Biomass , Fatty Acids , Nitrogen , Phosphorus , Esters
3.
Mar Drugs ; 20(10)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36286425

ABSTRACT

Microalgae and cyanobacteria are photosynthetic microorganisms' sources of renewable biomass that can be used for bioplastic production. These microorganisms have high growth rates, and contrary to other feedstocks, such as land crops, they do not require arable land. In addition, they can be used as feedstock for bioplastic production while not competing with food sources (e.g., corn, wheat, and soy protein). In this study, we review the macromolecules from microalgae and cyanobacteria that can serve for the production of bioplastics, including starch and glycogen, polyhydroxyalkanoates (PHAs), cellulose, polylactic acid (PLA), and triacylglycerols (TAGs). In addition, we focus on the cultivation of microalgae and cyanobacteria for wastewater treatment. This approach would allow reducing nutrient supply for biomass production while treating wastewater. Thus, the combination of wastewater treatment and the production of biomass that can serve as feedstock for bioplastic production is discussed. The comprehensive information provided in this communication would expand the scope of interdisciplinary and translational research.


Subject(s)
Cyanobacteria , Microalgae , Polyhydroxyalkanoates , Microalgae/metabolism , Biomass , Wastewater , Soybean Proteins/metabolism , Cyanobacteria/metabolism , Cellulose , Starch/metabolism , Triglycerides/metabolism , Glycogen/metabolism , Biofuels
4.
J Environ Manage ; 301: 113925, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34731961

ABSTRACT

Biomass waste generation concerns regulatory authorities to develop novel methods to sustain biotransformation processes. Particularly, lactic acid (LA) is a bulk commodity chemical used in diverse industries and holds a growing global market demand. Recently, lignocellulosic waste biomass is preferred for LA bio-production because of its non-edible and inexpensive nature. However, the information about new pretreatment methods for lignocellulosic feedstock, and novel strains capable to produce LA through fermentation is limited. Therefore, this review highlights the advancement of pretreatments methods of lignocellulosic biomass and biotransformation. Herein, we first briefly explored the main sources of lignocellulosic waste biomass, then we explored their latest advances in pretreatment processes particularly supercritical fluid extraction, and microwave-assisted extraction. Approaches for bioconversion were also analyzed, such as consolidated bioprocessing (CBP), simultaneous saccharification and fermentation (SSF), separate hydrolysis fermentation (SHF), among other alternatives. Also, new trends and approaches were documented, such as metagenomics to find novel strains of microorganisms and the use of recombinant strategies for the creation of new strains. Finally, we developed a holistic and sustainable perspective based on novel microbial ecology tools such as next-gen sequencing, bioinformatics, and metagenomics. All these shed light on the needs to culture powerful microbial isolates, co-cultures, and mixed consortia to improve fermentation processes with the aim of optimizing cultures and feedstock pretreatments.


Subject(s)
Lactic Acid , Lignin , Biomass , Fermentation , Hydrolysis , Lignin/metabolism
5.
Sci Total Environ ; 790: 148222, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34380253

ABSTRACT

Greenhouse gases (GHG) emissions are widely related to climate change, triggering several environmental problems of global concern and producing environmental, social, and economic negative impacts. Therefore, global research seeks to mitigate greenhouse gas emissions. On the other hand, the use of wastes under a circular economy scheme generates subproducts from the range of high to medium-value, representing a way to help sustainable development. Therefore, the use of wastewater as a culture medium to grow microalgae strains that biocapture environmental CO2, is a proposal with high potential to reduce the GHG presence in the environment. In this work, Scenedesmus sp. was cultivated using BG-11 medium and industrial wastewater (IWW) as a culture medium with three different CO2 concentrations, 0.03%, 10%, and 20% to determine their CO2 biocapture potential. Furthermore, the concomitant removal of COD, nitrates, and total phosphorus in wastewater was evaluated. Scenedesmus sp. achieves a biomass concentration of 1.9 g L-1 when is grown in BG-11 medium, 0.69 g L-1 when is grown in a combination of BG-11 medium and 25% of industrial wastewater; both cases with 20% CO2 supplied. The maximum CO2 removal efficiency (8.4%, 446 ± 150 mg CO2 L-1 day-1) was obtained with 10% CO2 supplied and using a combination of BG-11 medium and 50% IWW (T2). Also, the highest removal of COD was reached with a combination of BG-11 medium and T2 with a supply of 20% CO2 (82% of COD removal). Besides, the highest nitrates removal was achieved with a combination of BG-11 medium and 75% IWW (T3) with a supply of 10% CO2 (42% of nitrates removal) and the maximum TP removal was performed with the combination of BG-11 medium and 25% IWW (T1) with a supply of 10% CO2 (67% of TP removal). These results indicate that industrial wastewater can be used as a culture media for microalgae growth and CO2 biocapture can be performed as concomitant processes.


Subject(s)
Microalgae , Scenedesmus , Biomass , Carbon Dioxide , Wastewater/analysis
6.
Mar Drugs ; 19(6)2021 May 21.
Article in English | MEDLINE | ID: mdl-34064032

ABSTRACT

Porphyridium purpureum is a well-known Rhodophyta that recently has attracted enormous attention because of its capacity to produce many high-value metabolites such as the pigment phycoerythrin and several high-value fatty acids. Phycoerythrin is a fluorescent red protein-pigment commercially relevant with antioxidant, antimicrobial activity, and fluorescent properties. The volumetric mass transfer coefficient (kLa) was kept constant within the different scaling-up stages in the present study. This scaling-up strategy was sought to maintain phycoerythrin production and other high-value metabolites by Porphyridium purpureum, using hanging-bag photobioreactors. The kLa was monitored to ensure the appropriate mixing and CO2 diffusion in the entire culture during the scaling process (16, 80, and 400 L). Then, biomass concentration, proteins, fatty acids, carbohydrates, and phycoerythrin were determined in each step of the scaling-up process. The kLa at 16 L reached a level of 0.0052 s-1, while at 80 L, a value of 0.0024 s-1 was achieved. This work result indicated that at 400 L, 1.22 g L-1 of biomass was obtained, and total carbohydrates (117.24 mg L-1), proteins (240.63 mg L-1), and lipids (17.75% DW) were accumulated. Regarding fatty acids production, 46.03% palmitic, 8.03% linoleic, 22.67% arachidonic, and 2.55% eicosapentaenoic acid were identified, principally. The phycoerythrin production was 20.88 mg L-1 with a purity of 2.75, making it viable for food-related applications. The results of these experiments provide insight into the high-scale production of phycoerythrin via the cultivation of P. purpureum in an inexpensive and straightforward culture system.


Subject(s)
Fatty Acids/biosynthesis , Microalgae/growth & development , Phycoerythrin/biosynthesis , Porphyridium/growth & development , Proteins/metabolism , Carbohydrates/analysis , Carbohydrates/biosynthesis , Fatty Acids/analysis , Microalgae/metabolism , Photobioreactors , Phycoerythrin/analysis , Porphyridium/metabolism , Proteins/analysis
7.
Sci Total Environ ; 757: 143722, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33221013

ABSTRACT

Antidepressants are drugs with a direct action on the brain's biochemistry through their interaction with the neurotransmitters, such as dopamine, norepinephrine, and serotonin. The increasing worldwide contamination from these drugs may be witnessed through their increasing presence in the urban water cycle. Furthermore, their occurrence has been detected in non-urban water, such as rivers and oceans. Some endemic aquatic animals, such as certain fish and mollusks, have bioaccumulated different antidepressant drugs in their tissues. This problem will increase in the years to come because the present COVID-19 pandemic has increased the general worldwide occurrence of depression and anxiety, triggering the consumption of antidepressants and, consequently, their presence in the environment. This work provides information on the occurrence of the most administrated antidepressants in urban waters, wastewater treatment plants, rivers, and oceans. Furthermore, it provides an overview of the analytical approaches currently used to detect each antidepressant presented. Finally, the ecotoxicological effect of antidepressants on several in vivo models are listed. Considering the information provided in this review, there is an urgent need to test the presence of antidepressant members of the MAOI and TCA groups. Furthermore, incorporating new degradation/immobilization technologies in WWTPs will be useful to stop the increasing occurrence of these drugs in the environment.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Antidepressive Agents , Environmental Monitoring , Humans , Pandemics , Rivers , SARS-CoV-2 , Wastewater/analysis , Water Pollutants, Chemical/analysis
8.
J Environ Manage ; 278(Pt 2): 111534, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33129031

ABSTRACT

Pork production has expanded in the world in recent years. This growth has caused a significant increase in waste from this industry, especially of wastewater. Although there has been an increase in wastewater treatment, there is a lack of useful technologies for the treatment of wastewater from the pork industry. Swine farms generate high amounts of organic pollution, with large amounts of nitrogen and phosphorus with final destination into water bodies. Sadly, little attention has been devoted to animal wastes, which are currently treated in simple systems, such as stabilization ponds or just discharged to the environment without previous treatment. This uncontrolled release of swine wastewater is a major cause of eutrophication processes. Among the possible treatments, phyco-remediation seems to be a sustainable and environmentally friendly option of removing compounds from wastewater such as nitrogen, phosphorus, and some metal ions. Several studies have demonstrated the feasibility of treating swine wastewater using different microalgae species. Nevertheless, the practicability of applying this procedure at pilot-scale has not been explored before as an integrated process. This work presents an overview of the technological applications of microalgae for the treatment of wastewater from swine farms and the by-products (pigments, polysaccharides, lipids, proteins) and services of commercial interest (biodiesel, biohydrogen, bioelectricity, biogas) generated during this process. Furthermore, the environmental benefits while applying microalgae technologies are discussed.


Subject(s)
Microalgae , Wastewater , Animals , Biofuels , Biomass , Nitrogen , Phosphorus , Swine
9.
Case Stud Chem Environ Eng ; 4: 100127, 2021 Dec.
Article in English | MEDLINE | ID: mdl-38620862

ABSTRACT

During the last decades, the growth of concern towards different pollutants has been increasing due to population activities in large cities and the great need for food production by the agri-food industry. The effects observed in specific locations have shown the impact over the environment in air, soil and water. Specifically, the current pandemic of COVID-19 has brought into the picture the intensive use of different medical substances to treat the disease and population intensive misuse. In particular, the use of antibiotics has increased during the last 20 years with few regulations regarding their excessive use and the disposal of their residues from different sources. Within this review, an overview of sources of antibiotics to aquatic environments was done along with its impact to the environment and trophic chain, and negative effects of human health due prolonged exposure which endanger the environment, population health, water, and food sustainability. The revision indicates the differences between sources and its potential danger due toxicity, and accumulation that prevents water sustainability in the long run.

10.
Mar Drugs ; 18(12)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291783

ABSTRACT

Cyanobacteria are essential for the vast number of compounds they produce and the possible applications in the pharmaceutical, cosmetical, and food industries. As Lyngbya species' characterization is limited in the literature, we characterize this cyanobacterium's growth and biomass. L. purpureum was grown and analyzed under different salinities, culture media, and incubation times to determine the best conditions that favor its cell growth and the general production of proteins, carbohydrates, lipids, and some pigments as phycocyanin and chlorophyll a. In this study, each analyzed biomolecule's highest content was proteins 431.69 mg g-1, carbohydrates 301.45 mg g-1, lipids 131.5 mg g-1, chlorophyll a 4.09 mg g-1, and phycocyanin 40.4 mg g-1. These results can provide a general context of the possible uses that can be given to biomass and give an opening to investigate possible biocompounds or bio metabolites that can be obtained from it.


Subject(s)
Biomass , Lyngbya/drug effects , Lyngbya/genetics , Bacterial Proteins/biosynthesis , Carbohydrates/biosynthesis , Chlorophyll A/biosynthesis , Culture Media , Lipids/biosynthesis , Lyngbya/metabolism , Phycocyanin/biosynthesis , Saline Solution
11.
Sci Total Environ ; 724: 137960, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32408422

ABSTRACT

Diatoms are a type of microalgae with diverse capabilities which make them useful for multiple applications. The abundance of diatoms in water bodies facilitates the removal of pollutants from wastewater originating from different industries, such as agriculture and other anthropogenic sources. The unique photosynthetic, cellular and metabolic characteristics of diatoms allows them to utilize pollutants like nitrate, iron, phosphate, molybdenum, silica, and heavy metals, such as copper, cadmium, chromium, lead, etc., which make diatoms a good option for wastewater treatment. In addition, the biomass produced by diatoms growth on wastewaters has diverse applications and can, therefore, be valuable. This review focusses on the unique capabilities of diatoms for wastewater remediation and the capture of carbon dioxide, concomitant with the generation of valuable products. Diatom biorefinery can be a sustainable solution to wastewater management, and the biomass obtained from treatment can be turned into biofuels, biofertilizers, nutritional supplements for animal production, and used for pharmaceutical applications containing bioactive compounds like EPA, DHA and pigments such as fucoxanthin.


Subject(s)
Diatoms , Microalgae , Animals , Biofuels , Biomass , Wastewater
12.
Environ Res ; 179(Pt B): 108848, 2019 12.
Article in English | MEDLINE | ID: mdl-31678727

ABSTRACT

4-Nonylphenol (4-NP) is an anthropogenic contaminant found in different environmental matrices that has an effect over the biotic and abiotic factors within the environment. Bioremediation by microorganisms can be used as a potential treatment to remove this pollutant. In this work, a consortium of two microorganisms, Arthrospira maxima and Chlorella vulgaris, was employed to remove 4-NP from water. The parameters analyzed included cell growth, removal of 4-NP, and 4-NP remnant in the biomass. In addition, the metabolites produced in the process by this consortium were identified. It was found that C. vulgaris is more resistant to 4-NP than A. maxima (cell growth inhibition by 4-NP of 99%). The consortium used in this study had an IC50 greater than any strain of microalgae or cyanobacteria reported for 4-NP removal (9.29 mg/L) and reduced up to 96% of 4-NP in water in the first 48 h of culture. It was also observed that there is a bio-transformation of 4-NP, comparable with the process carried out by another bacterium, in which three similar metabolites were found (4-(1-methyl-octyl)-4-hydroxy-cyclohex-2-enone, 4-nonyl-4-hydroxy-ciclohexa-2,5-dienone and 4-nonyl-4-hydroxy- ciclohex-2-enone) and one that is similar to plant metabolism (4-nonyl-(1-methyl,6,8-metoxy)-hydroxybenzene). These results indicate that microalgae and cyanobacteria consortium can be used to remove 4-NP from water.


Subject(s)
Biotransformation , Chlorella vulgaris/metabolism , Phenols/metabolism , Spirulina/metabolism , Water Pollutants, Chemical/metabolism , Biomass , Microalgae
13.
Sci Total Environ ; 690: 1068-1088, 2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31470472

ABSTRACT

Existence of anthropogenic contaminants (ACs) in different environmental matrices is a serious and unresolved concern. For instance, ACs from different sectors, such as industrial, agricultural, and pharmaceutical, are found in water bodies with considerable endocrine disruptors potency and can damage the biotic components of the environment. The continuous ACs exposure can cause cellular toxicity, apoptosis, genotoxicity, and alterations in sex ratios in human beings. Whereas, aquatic organisms show bioaccumulation, trophic chains, and biomagnification of ACs through different entry route. These problems have been found in many countries around the globe, making them a worldwide concern. ACs have been found in different environmental matrices, such as water reservoirs for human consumption, wastewater treatment plants (WWTPs), drinking water treatment plants (DWTPs), groundwaters, surface waters, rivers, and seas, which demonstrate their free movement within the environment in an uncontrolled manner. This work provides a detailed overview of ACs occurrence in water bodies along with their toxicological effect on living organisms. The literature data reported between 2017 and 2018 is compiled following inclusion-exclusion criteria, and the obtained information was mapped as per type and source of ACs. The most important ACs are pharmaceuticals (diclofenac, ibuprofen, naproxen, ofloxacin, acetaminophen, progesterone ranitidine, and testosterone), agricultural products or pesticides (atrazine, carbendazim, fipronil), narcotics and illegal drugs (amphetamines, cocaine, and benzoylecgonine), food industry derivatives (bisphenol A, and caffeine), and personal care products (triclosan, and other related surfactants). Considering this threatening issue, robust detection and removal strategies must be considered in the design of WWTPs and DWTPs.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical/analysis , Water Supply/statistics & numerical data , Aquatic Organisms , Benzhydryl Compounds , Diclofenac , Endocrine Disruptors , Pesticides , Pharmaceutical Preparations , Phenols , Water Pollutants, Chemical/toxicity , Water Resources
14.
Sci Total Environ ; 676: 356-367, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31048166

ABSTRACT

Nejayote and swine wastewater are highly pollutant effluents and a source of organic matter load that sometimes released into water bodies (rivers or lakes), soils or public sewer system, with or without partial treatments. Nejayote is a wastewater product of alkaline cooking of maize, whereas, swine wastewater results from the primary production of pigs for the meat market. Owing to the presence of environmentally related pollutants, both sources are considered the major cause of pollution and thus require urgent action. Herein, we report a synergistic approach to effectively use and/or treat Nejayote and swine wastewater as a cost-effective culture medium for microalgae growth, which ultimately induces the removal of polluting agents. In this study, the strains Arthrospira maxima and Chlorella vulgaris were grown using different dilutions of Nejayote and swine wastewater. Both wastewaters were used as the only source of macronutrients and trace elements for growth. For A. maxima, the treatment of 10% nejayote and 90% of water (T3) resulted in a cell growth of 32 × 104 cell/mL at 12 days (µmax = 0.27/d). While, a mixture of 25% swine wastewater, 25% nejayote and 50% water (T2) produced 32 × 104 cell/mL at 18 days (µmax = 0.16/d). A significant reduction was also noted as 92% from 138 mg/L of TN, 75% from 77 mg/L of TP, and 96% from 8903 mg/L of COD, among different treatments. For C. vulgaris, the treatment of 10% swine wastewater and 90% water (T1) gave a cell growth of 128 × 106 cell/mL (µmax = 0.57/d) followed by T3 yielded 62 × 106 cell/mL (µmax = 0.70/d) and T2 yielded 48 × 106 cell/mL (µmax = 0.54/d). Up to 91% reduction from 138 mg/L of TN, 85% from 19 mg/L of TP and 96% from 4870 mg/L of COD was also recorded. These results show that microalgae can be used to treat these types of wastewater while at the same time using them as a culture media for microalgae. The resultant biomass can additionally be used for getting other sub-products of commercial interest.


Subject(s)
Chlorella vulgaris/growth & development , Spirulina/growth & development , Waste Disposal, Fluid , Wastewater/microbiology , Animal Husbandry , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...