Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Brain ; 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38456468

Inherited glycosylphosphatidylinositol deficiency disorders (IGDs) are a group of rare multisystem disorders arising from pathogenic variants in glycosylphosphatidylinositol anchor pathway (GPI-AP) genes. Despite associating 24 of at least 31 GPI-AP genes with human neurogenetic disease, prior reports are limited to single genes without consideration of the GPI-AP as a whole and with limited natural history data. In this multinational retrospective observational study, we systematically analyse the molecular spectrum, phenotypic characteristics, and natural history of 83 individuals from 75 unique families with IGDs, including 70 newly reported individuals: the largest single cohort to date. Core clinical features were developmental delay or intellectual disability (DD/ID, 90%), seizures (83%), hypotonia (72%), and motor symptoms (64%). Prognostic and biologically significant neuroimaging features included cerebral atrophy (75%), cerebellar atrophy (60%), callosal anomalies (57%), and symmetric restricted diffusion of the central tegmental tracts (60%). Sixty-one individuals had multisystem involvement including gastrointestinal (66%), cardiac (19%), and renal (14%) anomalies. Though dysmorphic features were appreciated in 82%, no single dysmorphic feature had a prevalence >30%, indicating substantial phenotypic heterogeneity. Follow-up data were available for all individuals, 15 of whom were deceased at the time of writing. Median age at seizure onset was 6 months. Individuals with variants in synthesis stage genes of the GPI-AP exhibited a significantly shorter time to seizure onset than individuals with variants in transamidase and remodelling stage genes of the GPI-AP (P=0.046). Forty individuals had intractable epilepsy. The majority of individuals experienced delayed or absent speech (95%); motor delay with non-ambulance (64%); and severe-to-profound DD/ID (59%). Individuals with a developmental epileptic encephalopathy (51%) were at greater risk of intractable epilepsy (P=0.003), non-ambulance (P=0.035), ongoing enteral feeds (P<0.001), and cortical visual impairment (P=0.007). Serial neuroimaging showed progressive cerebral volume loss in 87.5% and progressive cerebellar atrophy in 70.8%, indicating a neurodegenerative process. Genetic analyses identified 93 unique variants (106 total), including 22 novel variants. Exploratory analyses of genotype-phenotype correlations using unsupervised hierarchical clustering identified novel genotypic predictors of clinical phenotype and long-term outcome with meaningful implications for management. In summary, we expand both the mild and severe phenotypic extremities of the IGDs; provide insights into their neurological basis; and, vitally, enable meaningful genetic counselling for affected individuals and their families.

2.
J Invest Dermatol ; 144(4): 820-832.e9, 2024 Apr.
Article En | MEDLINE | ID: mdl-37802294

Mosaic mutations in genes GNAQ or GNA11 lead to a spectrum of diseases including Sturge-Weber syndrome and phakomatosis pigmentovascularis with dermal melanocytosis. The pathognomonic finding of localized "tramlining" on plain skull radiography, representing medium-sized neurovascular calcification and associated with postnatal neurological deterioration, led us to study calcium metabolism in a cohort of 42 children. In this study, we find that 74% of patients had at least one abnormal measurement of calcium metabolism, the commonest being moderately low serum ionized calcium (41%) or high parathyroid hormone (17%). Lower levels of ionized calcium even within the normal range were significantly associated with seizures, and with specific antiepileptics despite normal vitamin D levels. Successive measurements documented substantial intrapersonal fluctuation in indices over time, and DEXA scans were normal in patients with hypocalcemia. Neurohistology from epilepsy surgery in five patients revealed not only intravascular, but perivascular and intraparenchymal mineral deposition and intraparenchymal microvascular disease in addition to previously reported findings. Neuroradiology review clearly demonstrated progressive calcium deposition in individuals over time. These findings and those of the adjoining paper suggest that calcium deposition in the brain of patients with GNAQ/GNA11 mosaicism may not be a nonspecific sign of damage as was previously thought, but may instead reflect the central postnatal pathological process in this disease spectrum.


Calcinosis , Neurocutaneous Syndromes , Child , Humans , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Calcium/metabolism , Mosaicism , Neurocutaneous Syndromes/diagnosis , Neurocutaneous Syndromes/genetics , Calcinosis/genetics
3.
Neuroradiology ; 64(10): 1919-1950, 2022 Oct.
Article En | MEDLINE | ID: mdl-35869291

The fifth edition of the World Health Organization Classification of Tumours of the Central Nervous System (WHO CNS5) published in 2021 builds on the 2016 edition and incorporates output from the Consortium to Inform Molecular and Practical Approaches to CNS Tumour Taxonomy (cIMPACT-NOW). WHO CNS5 introduces fundamental changes to brain tumour classification through the introduction of new tumour families and types, especially in the paediatric population, and a revision of diagnostic criteria for some of the existing neoplasms. Neuroradiologists are central to brain tumour diagnostics, and it is therefore essential that they become familiar with the key updates. This review aims to summarise the most relevant updates for the neuroradiologist and, where available, discuss the known radiophenotypes of various new tumour types to allow for increased accuracy of language and diagnosis. Of particular importance, WHO CNS5 places greater emphasis on organising tumours by molecular type to reflect biology, as well as to allow for better planning of treatment. The principal updates in adult tumours concern the molecular definition of glioblastoma, restructuring of diffuse gliomas, and the introduction of several new tumour types. The updates to the paediatric classification are protean, ranging from the introduction of new types to establishing separate tumour families for paediatric-type gliomas. This review summarises the most significant revisions and captures the rationale and radiological implications for the major updates.


Brain Neoplasms , Central Nervous System Neoplasms , Glioma , Brain/pathology , Brain Neoplasms/diagnostic imaging , Central Nervous System Neoplasms/diagnostic imaging , Child , Glioma/pathology , Humans , World Health Organization
4.
Neurooncol Adv ; 4(1): vdac003, 2022.
Article En | MEDLINE | ID: mdl-35233531

BACKGROUND: Postoperative pediatric cerebellar mutism syndrome (pCMS) is a common but severe complication that may arise following the resection of posterior fossa tumors in children. Two previous studies have aimed to preoperatively predict pCMS, with varying results. In this work, we examine the generalization of these models and determine if pCMS can be predicted more accurately using an artificial neural network (ANN). METHODS: An overview of reviews was performed to identify risk factors for pCMS, and a retrospective dataset was collected as per these defined risk factors from children undergoing resection of primary posterior fossa tumors. The ANN was trained on this dataset and its performance was evaluated in comparison to logistic regression and other predictive indices via analysis of receiver operator characteristic curves. The area under the curve (AUC) and accuracy were calculated and compared using a Wilcoxon signed-rank test, with P < .05 considered statistically significant. RESULTS: Two hundred and four children were included, of whom 80 developed pCMS. The performance of the ANN (AUC 0.949; accuracy 90.9%) exceeded that of logistic regression (P < .05) and both external models (P < .001). CONCLUSION: Using an ANN, we show improved prediction of pCMS in comparison to previous models and conventional methods.

5.
Hum Genet ; 141(2): 257-272, 2022 Feb.
Article En | MEDLINE | ID: mdl-34907471

Bain type of X-linked syndromic intellectual developmental disorder, caused by pathogenic missense variants in HRNRPH2, was initially described in six female individuals affected by moderate-to-severe neurodevelopmental delay. Although it was initially postulated that the condition would not be compatible with life in males, several affected male individuals harboring pathogenic variants in HNRNPH2 have since been documented. However, functional in-vitro analyses of identified variants have not been performed and, therefore, possible genotype-phenotype correlations remain elusive. Here, we present eight male individuals, including a pair of monozygotic twins, harboring pathogenic or likely pathogenic HNRNPH2 variants. Notably, we present the first individuals harboring nonsense or frameshift variants who, similarly to an individual harboring a de novo p.(Arg29Cys) variant within the first quasi-RNA-recognition motif (qRRM), displayed mild developmental delay, and developed mostly autistic features and/or psychiatric co-morbidities. Additionally, we present two individuals harboring a recurrent de novo p.(Arg114Trp), within the second qRRM, who had a severe neurodevelopmental delay with seizures. Functional characterization of the three most common HNRNPH2 missense variants revealed dysfunctional nucleocytoplasmic shuttling of proteins harboring the p.(Arg206Gln) and p.(Pro209Leu) variants, located within the nuclear localization signal, whereas proteins with p.(Arg114Trp) showed reduced interaction with members of the large assembly of splicing regulators (LASR). Moreover, RNA-sequencing of primary fibroblasts of the individual harboring the p.(Arg114Trp) revealed substantial alterations in the regulation of alternative splicing along with global transcriptome changes. Thus, we further expand the clinical and variant spectrum in HNRNPH2-associated disease in males and provide novel molecular insights suggesting the disorder to be a spliceopathy on the molecular level.


Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics , Mutation , Neurodevelopmental Disorders/genetics , Adolescent , Alternative Splicing/genetics , Amino Acid Substitution , Brain/diagnostic imaging , Child , Child, Preschool , Chromosomes, Human, X/genetics , Codon, Nonsense , Diseases in Twins/diagnostic imaging , Diseases in Twins/genetics , Female , Frameshift Mutation , Genetic Association Studies , Genetic Variation , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Male , Mutation, Missense , Neurodevelopmental Disorders/diagnostic imaging , Phenotype , RNA-Seq , Twins, Monozygotic , Young Adult
6.
Front Genet ; 12: 737094, 2021.
Article En | MEDLINE | ID: mdl-34925443

Background: SRD5A3-CDG is a rare N-glycosylation defect caused by steroid 5 alpha reductase type 3 deficiency. Its key feature is an early severe visual impairment with variable ocular anomalies often leading to diagnosis. Additional symptoms are still poorly defined. In this case study, we discuss 11 genetically confirmed cases, and report on emerging features involving other systems in addition to the eye phenotype. Methods: In total, 11 SRD5A3-CDG patients in five sets of sibships were included in the study. Data on 9 of 11 patients are as of yet unpublished. Patients' results on biochemical and genetic investigations and on in-depth phenotyping are presented. Results: Key diagnostic features of SRD5A3-CDG are ophthalmological abnormalities with early-onset retinal dystrophy and optic nerve hypoplasia. SRD5A3-CDG is also characterized by variable neurological symptoms including intellectual disability, ataxia, and hypotonia. Furthermore, ichthyosiform skin lesions, joint laxity, and scoliosis have been observed in our cohort. We also report additional findings including dystonia, anxiety disorder, gastrointestinal symptoms, and MRI findings of small basal ganglia and mal-rotated hippocampus, whereas previous publications described dysmorphic features as a common finding in SRD5A3, which could not be confirmed in our patient cohort. Conclusion: The detailed description of the phenotype of this large cohort of patients with SRD5A3-CDG highlights that the key clinical diagnostic features of SRD5A3-CDG are an early onset form of ophthalmological problems in patients with a multisystem disorder with variable symptoms evolving over time. This should aid earlier diagnosis and confirms the need for long-time follow-up of patients.

7.
Neuroimage ; 238: 118102, 2021 09.
Article En | MEDLINE | ID: mdl-34058334

OBJECTIVE: Malformations of cortical development (MCD), including focal cortical dysplasia (FCD), are the most common cause of drug-resistant focal epilepsy in children. Histopathological lesion characterisation demonstrates abnormal cell types and lamination, alterations in myelin (typically co-localised with iron), and sometimes calcification. Quantitative susceptibility mapping (QSM) is an emerging MRI technique that measures tissue magnetic susceptibility (χ) reflecting it's mineral composition. We used QSM to investigate abnormal tissue composition in a group of children with focal epilepsy with comparison to effective transverse relaxation rate (R2*) and Synchrotron radiation X-ray fluorescence (SRXRF) elemental maps. Our primary hypothesis was that reductions in χ would be found in FCD lesions, resulting from alterations in their iron and calcium content. We also evaluated deep grey matter nuclei for changes in χ with age. METHODS: QSM and R2* maps were calculated for 40 paediatric patients with suspected MCD (18 histologically confirmed) and 17 age-matched controls. Patients' sub-groups were defined based on concordant electro-clinical or histopathology data. Quantitative investigation of QSM and R2* was performed within lesions, using a surface-based approach with comparison to homologous regions, and within deep brain regions using a voxel-based approach with regional values modelled with age and epilepsy as covariates. Synchrotron radiation X-ray fluorescence (SRXRF) was performed on brain tissue resected from 4 patients to map changes in iron, calcium and zinc and relate them to MRI parameters. RESULTS: Compared to fluid-attenuated inversion recovery (FLAIR) or T1-weighted imaging, QSM improved lesion conspicuity in 5% of patients. In patients with well-localised lesions, quantitative profiling demonstrated decreased χ, but not R2*, across cortical depth with respect to the homologous regions. Contra-lateral homologous regions additionally exhibited increased χ at 2-3 mm cortical depth that was absent in lesions. The iron decrease measured by the SRXRF in FCDIIb lesions was in agreement with myelin reduction observed by Luxol Fast Blue histochemical staining. SRXRF analysis in two FCDIIb tissue samples showed increased zinc and calcium in one patient, and decreased iron in the brain region exhibiting low χ and high R2* in both patients. QSM revealed expected age-related changes in the striatum nuclei, substantia nigra, sub-thalamic and red nucleus. CONCLUSION: QSM non-invasively revealed cortical/sub-cortical tissue alterations in MCD lesions and in particular that χ changes in FCDIIb lesions were consistent with reduced iron, co-localised with low myelin and increased calcium and zinc content. These findings suggest that measurements of cortical χ could be used to characterise tissue properties non-invasively in epilepsy lesions.


Calcium/metabolism , Cerebral Cortex/diagnostic imaging , Drug Resistant Epilepsy/diagnostic imaging , Gray Matter/diagnostic imaging , Iron/metabolism , Malformations of Cortical Development/diagnostic imaging , Zinc/metabolism , Adolescent , Brain Mapping , Cerebral Cortex/metabolism , Child , Child, Preschool , Drug Resistant Epilepsy/etiology , Drug Resistant Epilepsy/metabolism , Female , Gray Matter/metabolism , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Malformations of Cortical Development/complications , Malformations of Cortical Development/metabolism , Retrospective Studies , Young Adult
8.
J Neuropathol Exp Neurol ; 80(1): 52-59, 2021 01 01.
Article En | MEDLINE | ID: mdl-33270865

Central nervous system neuroblastoma with FOXR2 activation (CNS NB FOXR2) has recently been described as a class of brain tumors sharing common genetic events and a highly similar DNA methylation profile. Most of these tumors have previously been diagnosed as primitive neuroectodermal tumor (PNET). Whereas the entity of PNET has been removed from the WHO classification of brain tumors in its current edition, CNS neuroblastoma was kept as an entity, but still lacks any molecular detail. Here, we describe 8 cases of CNS NB FOXR2 focusing on histomorphological and immunohistochemical features and include magnetic resonance imaging (MRI) for 2 of these cases. MRI revealed large supratentorial masses in superficial location with prominent cysts and necrosis, but little edema. Diffusion and enhancement characteristics were variable. Histological analyses showed that most of the cases displayed neuronal differentiation with necrosis, endothelial proliferation, and high vascularity. Immunohistochemistry revealed strong expression of synaptophysin, MAP2, and OLIG2 as well as moderate proliferation. These findings suggest that tumors with the molecular diagnosis of CNS NB FOXR2 may fit well into the WHO entity of CNS neuroblastoma. Our findings may be helpful when establishing an integrated diagnosis and may be indispensable if molecular data are unavailable.


Brain Neoplasms/pathology , Brain/pathology , Neuroblastoma/pathology , Brain/diagnostic imaging , Brain/metabolism , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Child , Child, Preschool , DNA Copy Number Variations , DNA Methylation , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Humans , Infant , Magnetic Resonance Imaging , Male , Neuroblastoma/diagnostic imaging , Neuroblastoma/genetics , Neuroblastoma/metabolism
9.
JAMA Neurol ; 77(11): 1440-1445, 2020 11 01.
Article En | MEDLINE | ID: mdl-32609336

Importance: Neurological manifestations have been reported in adults with coronavirus disease 2019 (COVID-19), which is caused by the highly pathogenic virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objective: To report the neurological manifestations of children with COVID-19. Design, Setting, and Participants: In this case-series study, patients younger than 18 years who presented with SARS-CoV-2 infection and neurological symptoms to Great Ormond Street Hospital for Children (London, UK) between March 1, 2020, and May 8, 2020, were included after infection was confirmed by either a quantitative reverse transcription-polymerase chain reaction assay by nasopharyngeal swab or a positive test result for IgG antibodies against SARS-CoV-2 in serum. Main Outcomes and Measures: Clinical and paraclinical features were retrieved from electronic patient records. Results: Of the 27 children with COVID-19 pediatric multisystem inflammatory syndrome, 4 patients (14.8%) who were previously healthy had new-onset neurological symptoms. Symptoms included encephalopathy, headaches, brainstem and cerebellar signs, muscle weakness, and reduced reflexes. All 4 patients required intensive care unit admission for the treatment of COVID-19 pediatric multisystem inflammatory syndrome. Splenium signal changes were seen in all 4 patients on magnetic resonance imaging of the brain. In the 2 patients whose cerebrospinal fluid was tested, samples were acellular, with no evidence of infection on polymerase chain reaction or culture (including negative SARS-CoV-2 polymerase chain reaction results) and negative oligoclonal band test results. In all 3 patients who underwent electroencephalography, a mild excess of slow activity was found. Tests for N-methyl-d-aspartate receptor, myelin oligodendrocyte glycoprotein, and aquaporin-4 autoantibodies had negative results in all patients. In all 3 patients who underwent nerve conduction studies and electromyography, mild myopathic and neuropathic changes were seen. Neurological improvement was seen in all patients, with 2 making a complete recovery by the end of the study. Conclusions and Relevance: In this case-series study, children with COVID-19 presented with new neurological symptoms involving both the central and peripheral nervous systems and splenial changes on imaging, in the absence of respiratory symptoms. Additional research is needed to assess the association of neurological symptoms with immune-mediated changes among children with COVID-19.


COVID-19/complications , Central Nervous System Diseases/diagnosis , Central Nervous System Diseases/etiology , Corpus Callosum/diagnostic imaging , Peripheral Nervous System Diseases/diagnosis , Peripheral Nervous System Diseases/etiology , Systemic Inflammatory Response Syndrome/complications , Adolescent , Central Nervous System Diseases/diagnostic imaging , Central Nervous System Diseases/physiopathology , Child , Electroencephalography , Electromyography , Humans , Magnetic Resonance Imaging , Neural Conduction/physiology , Peripheral Nervous System Diseases/physiopathology
10.
Neuroradiology ; 62(1): 71-80, 2020 Jan.
Article En | MEDLINE | ID: mdl-31667545

PURPOSE: BRAF V600E mutation is a distinctive genomic alteration of pediatric low-grade gliomas with prognostic and therapeutic implications. The aim of this retrospective multicenter study was to analyze imaging features of BRAF V600E-mutant and wild-type cerebral pilocytic astrocytomas (PAs) and gangliogliomas (GGs), focusing on the role of diffusion weighted imaging (DWI). METHODS: We retrospectively evaluated 56 pediatric patients with histologically proven, treatment-naïve PAs and GGs who underwent conventional MRI, DWI, and molecular analysis for BRAF V600E mutation. Twenty-three subjects presented BRAF V600E-mutant (12 PAs and 11 GGs) and 33 BRAF V600E wild-type (26 PAs and 7 GGs) tumors. Imaging studies were reviewed for dominant site, margin definition, hemorrhage, calcification, cystic components, contrast enhancement, and relative mean and minimum ADC values (rADCmean and rADCmin). Statistics included Fisher's exact test, Student t test, general linear model, and receiver operating characteristic (ROC) analysis. RESULTS: PA and GG BRAF V600E-mutant had significantly lower rADCmean (p < 0.001) and rADCmin (p < 0.001) values than wild type, regardless of tumor histology and location. ROC analysis demonstrated similar performances between these parameters in predicting BRAF V600E status (rADCmean: AUC 0.831, p < 0.001; rADCmin: AUC 0.885, p < 0.001). No significant differences regarding additional imaging features emerged between BRAF V600E-mutant and wild-type lesions, with the exception of the number of tumors with cystic components, significantly higher in BRAF V600E-mutant PAs (p = 0.011) CONCLUSION: Assessment of the DWI characteristics of GGs and PAs may assist in predicting BRAF V600E status, suggesting a radiogenomic correlation and prompt molecular characterization of these tumors.


Astrocytoma/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Ganglioglioma/diagnostic imaging , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics , Adolescent , Astrocytoma/genetics , Child , Child, Preschool , Diagnosis, Differential , Diffusion Magnetic Resonance Imaging , Female , Ganglioglioma/genetics , Humans , Infant , Male , Retrospective Studies , Sensitivity and Specificity
11.
Neurosurg Focus ; 44(6): E15, 2018 06.
Article En | MEDLINE | ID: mdl-29852760

OBJECTIVE Tectal gliomas constitute a rare and inhomogeneous group of lesions with an uncertain clinical course. Because these supposedly benign tumors are frequently followed up by observation over many years, the authors undertook this analysis of their own case series in an effort to demonstrate that the clinical course is highly variable and that there is a potential for a progressive biology. METHODS Clinical data analysis of 23 cases of tectal glioma (involving 9 children and 14 adults) was performed retrospectively. Radiographic data were analyzed longitudinally and MR images were evaluated for tumor volume, contrast enhancement, and growth progression. Quality of life was assessed using the EORTC BN20 and C30 questionnaires during follow-up in a subgroup of patients. RESULTS The patients' mean age at diagnosis was 29.2 years. The main presenting symptom at diagnosis was hydrocephalus (80%). Six patients were treated by primary tumor resection (26.1%), 3 patients underwent biopsy followed by resection (13.1%), and 3 patients underwent biopsy only (13.1%). For additional treatment of hydrocephalus, 14 patients (60.9%) received shunts and/or endoscopic third ventriculostomy. Radiographic tumor progression was observed in 47.9% of the 23 cases. The mean time between diagnosis and growth progression was 51.5 months, and the mean time to contrast enhancement was 69.7 months. Histopathological analysis was obtained in 12 cases (52.2%), resulting in 5 cases of high-grade glioma (3 cases of glioblastoma multiforme [GBM], grade IV, and 2 of anaplastic astrocytoma, grade III), 5 cases of pilocytic astrocytoma, 1 diffuse astrocytoma, and 1 ganglioglioma. Malignant progression was observed in 2 cases, with 1 case progressing from a diffuse astrocytoma (grade II) to a GBM (grade IV) within a period of 13 years. Quality-of-life measurements demonstrated distinct functional deficits compared to a healthy sample as well as glioma control cohorts. CONCLUSIONS Analysis of this case series shows that a major subpopulation of tectal gliomas show progression and malignant transformation in children as well as in adolescents. These tumors therefore cannot be considered inert lesions and require histological confirmation and close follow-up. Quality-of-life questionnaires show that tectal glioma patients might benefit from special psychological support in emotional, social, and cognitive functionality.


Brain Stem Neoplasms/diagnostic imaging , Brain Stem Neoplasms/therapy , Disease Management , Disease Progression , Quality of Life , Tectum Mesencephali/diagnostic imaging , Adolescent , Adult , Aged , Child , Child, Preschool , Cohort Studies , Female , Follow-Up Studies , Humans , Infant , Longitudinal Studies , Male , Middle Aged , Retrospective Studies , Young Adult
12.
Neurogenetics ; 18(4): 227-235, 2017 Dec.
Article En | MEDLINE | ID: mdl-29075935

Mitochondrial diseases are characterised by clinical, molecular and functional heterogeneity, reflecting their bi-genomic control. The nuclear gene GFM2 encodes mtEFG2, a protein with an essential role during the termination stage of mitochondrial translation. We present here two unrelated patients harbouring different and previously unreported compound heterozygous (c.569G>A, p.(Arg190Gln); c.636delA, p.(Glu213Argfs*3)) and homozygous (c.275A>C, p.(Tyr92Ser)) recessive variants in GFM2 identified by whole exome sequencing (WES) together with histochemical and biochemical findings to support the diagnoses of pathological GFM2 variants in each case. Both patients presented similarly in early childhood with global developmental delay, raised CSF lactate and abnormalities on cranial MRI. Sanger sequencing of familial samples confirmed the segregation of bi-allelic GFM2 variants with disease, while investigations into steady-state mitochondrial protein levels revealed respiratory chain subunit defects and loss of mtEFG2 protein in muscle. These data demonstrate the effects of defective mtEFG2 function, caused by previously unreported variants, confirming pathogenicity and expanding the clinical phenotypes associated with GFM2 variants.


Mitochondria/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/metabolism , Peptide Elongation Factor G/genetics , Child , Exome/genetics , Female , Homozygote , Humans , Male , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mutation/genetics , Pedigree , Phenotype
13.
Mitochondrion ; 37: 55-61, 2017 11.
Article En | MEDLINE | ID: mdl-28694194

LYRM7 is involved in the last steps of mitochondrial complex III assembly where it acts as a chaperone for the Rieske iron­sulfur (Fe-S) protein in the mitochondrial matrix. Using exome sequencing, we identified homozygosity for a splice site destroying 4 base pair deletion in LYRM7 in a child with recurrent lactic acidotic crises and distinct early-onset leukencephalopathy. Sanger sequencing showed variant segregation in similarly affected family members. Functional analyses revealed a reduced amount of the Rieske Fe-S protein, which was restored after re-expression of LYRM7. Our data provide further evidence for the importance of LYRM7 for mitochondrial function and emphasize the importance of whole exome sequencing in the diagnosis of rare mitochondrial diseases.


Electron Transport Complex III/deficiency , Mitochondria/enzymology , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Acidosis, Lactic/complications , Acidosis, Lactic/genetics , Acidosis, Lactic/pathology , Child, Preschool , Electron Transport Complex III/analysis , Female , Humans , Infant , Leukoencephalopathies/complications , Leukoencephalopathies/genetics , Leukoencephalopathies/pathology , Sequence Deletion
15.
PLoS One ; 11(11): e0164863, 2016.
Article En | MEDLINE | ID: mdl-27802295

BACKGROUND AND PURPOSE: Conventional magnetic resonance imaging (MRI) of patients with hemolytic uremic syndrome (HUS) and neurological symptoms performed during an epidemic outbreak of Escherichia coli O104:H4 in Northern Europe has previously shown pathological changes in only approximately 50% of patients. In contrast, susceptibility-weighted imaging (SWI) revealed a loss of venous contrast in a large number of patients. We hypothesized that this observation may be due to an increase in cerebral blood flow (CBF) and aimed to identify a plausible cause. MATERIALS AND METHODS: Baseline 1.5T MRI scans of 36 patients (female, 26; male, 10; mean age, 38.2±19.3 years) were evaluated. Venous contrast was rated on standard SWI minimum intensity projections. A prototype four-dimensional (time resolved) magnetic resonance angiography (4D MRA) assessed cerebral hemodynamics by global time-to-peak (TTP), as a surrogate marker for CBF. Clinical parameters studied were hemoglobin, hematocrit, creatinine, urea levels, blood pressure, heart rate, and end-tidal CO2. RESULTS: SWI venous contrast was abnormally low in 33 of 36 patients. TTP ranged from 3.7 to 10.2 frames (mean, 7.9 ± 1.4). Hemoglobin at the time of MRI (n = 35) was decreased in all patients (range, 5.0 to 12.6 g/dL; mean, 8.2 ± 1.4); hematocrit (n = 33) was abnormally low in all but a single patient (range, 14.3 to 37.2%; mean, 23.7 ± 4.2). Creatinine was abnormally high in 30 of 36 patients (83%) (range, 0.8 to 9.7; mean, 3.7 ± 2.2). SWI venous contrast correlated significantly with hemoglobin (r = 0.52, P = 0.0015), hematocrit (r = 0.65, P < 0.001), and TTP (r = 0.35, P = 0.036). No correlation of SWI with blood pressure, heart rate, end-tidal CO2, creatinine, and urea level was observed. Findings suggest that the loss of venous contrast is related to an increase in CBF secondary to severe anemia related to HUS. SWI contrast of patients with pathological conventional MRI findings was significantly lower compared to patients with normal MRI (mean SWI score, 1.41 and 2.05, respectively; P = 0.04). In patients with abnormal conventional MRI, mean TTP (7.45), mean hemoglobin (7.65), and mean hematocrit (22.0) were lower compared to patients with normal conventional MRI scans (mean TTP = 8.28, mean hemoglobin = 8.63, mean hematocrit = 25.23). CONCLUSION: In contrast to conventional MRI, almost all patients showed pathological changes in cerebral hemodynamics assessed by SWI and 4D MRA. Loss of venous contrast on SWI is most likely the result of an increase in CBF and may be related to the acute onset of anemia. Future studies will be needed to assess a possible therapeutic effect of blood transfusions in patients with HUS and neurological symptoms.


Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Hemolytic-Uremic Syndrome/pathology , Adult , Europe , Female , Humans , Magnetic Resonance Angiography/methods , Magnetic Resonance Imaging/methods , Male
16.
Orphanet J Rare Dis ; 11(1): 93, 2016 07 08.
Article En | MEDLINE | ID: mdl-27392569

BACKGROUND: Hematopoietic stem cell transplantation (HSCT) is the treatment of choice for young Hurler patients. Despite halting of neurocognitive decline and improvement of life expectancy, the beneficial effect on the skeletal system is limited. As orthopedic complications are one of the most disabling factors following HSCT, this points to the need for new treatment strategies. The study summarizes musculoskeletal manifestations in 19 transplanted Hurler patients. METHODS: Data were obtained retrospectively. Patients' charts for physical examinations of the joint range of motion (JROM) of shoulders, elbows, hips and knees were reviewed. Radiographic evaluations of thorax, spine, pelvis and hands were performed. MRI scans of the craniocervical junction were analyzed to determine odontoid hypoplasia and the prevalence of craniocervical stenosis. RESULTS: Nineteen Hurler patients (10 females, 9 males) with an average age of 8.1 years (range 2.5-23.8) at the latest follow-up, who underwent allogenic HSCT between 1991 and 2012, were assessed after an average follow-up period of 6.4 years (range 0.7-22.5). Seventeen patients achieved long-term engraftment, two developed graft failures. The majority of patients showed a steady state or improvements in the mobility of knees (31 %/63 %), hips (47 %/40 %) and elbows (56 %/38 %). However, shoulder abduction was impaired in ¾ of patients and showed the highest rate of progression (31 %). In patients with graft failure, progressive restrictions in JROM were noted. Assessments of the craniocervical junction by MRI showed stable or improved diameters in 67 % of patients. Correction or stabilization of odontoid hypoplasia was found in 64 %. However thoracolumbar kyphosis, scoliosis, hip dysplasia and genua valga were progressive despite HSCT. At the last follow up, 47 % of patients were partially wheelchair dependent, 10 % wheelchair bound and 25 % regularly experienced pain in the spine, hips and lower extremities due to orthopedic problems. CONCLUSION: Joint mobility, odontoid hypoplasia and craniocervical stenosis might stabilize or even improve in Hurler patients following HSCT. However, despite the beneficial effects on some musculoskeletal manifestations, skeletal complications are frequently observed and the overall burden of orthopedic disease is significant. Frequent multi-disciplinary follow-up in a specialized center are essential. Novel therapeutic approaches (e.g. anti-inflammatory drugs) are needed to improve musculoskeletal outcomes.


Hematopoietic Stem Cell Transplantation , Mucopolysaccharidosis I/pathology , Mucopolysaccharidosis I/therapy , Adolescent , Adult , Bone Diseases, Developmental/pathology , Child , Child, Preschool , Disease Progression , Female , Hip Dislocation/pathology , Humans , Magnetic Resonance Imaging , Male , Mucopolysaccharidosis I/complications , Musculoskeletal Diseases/etiology , Musculoskeletal Diseases/pathology , Retrospective Studies , Treatment Outcome , Young Adult
17.
Mol Cell Probes ; 29(5): 319-22, 2015 Oct.
Article En | MEDLINE | ID: mdl-26327357

Mutations in the DARS2 gene are known to cause leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL), a rare autosomal recessive neurological disorder. It was originally described as juvenile-onset slowly progressive ataxia and spasticity, but recent reports suggest a broader clinical spectrum. Most patients were found to carry compound heterozygous DARS2 mutations, and only very few patients with homozygous mutations have been described so far. We present here an 8-month-old boy carrying a homozygous missense mutation in DARS2 who clinically showed severe neurological deterioration after a respiratory tract infection, followed by an almost complete remission of symptoms. This report further extends the knowledge about the clinical and molecular genetic spectrum of LBSL.


Aspartate-tRNA Ligase/genetics , Leukoencephalopathies/genetics , Mutation, Missense , Age of Onset , Genetic Predisposition to Disease , Homozygote , Humans , Infant , Leukoencephalopathies/diagnosis , Male , Pedigree , Sequence Analysis, DNA
18.
Acta Radiol Open ; 4(4): 2047981615573655, 2015 Apr.
Article En | MEDLINE | ID: mdl-25848550

The clinical spectrum in boys with X-linked adrenoleukodystrophy (X-ALD) ranges from isolated adrenocortical insufficiency and slowly progressive myelopathy to devastating cerebral demyelination. In the individual case, the disease course still remains unpredictable. Research findings suggest an important role of brain magnetic resonance imaging (MRI) lesion patterns as prognostic markers for X-ALD. Hence, familiarity with imaging features of childhood X-ALD in combination with clinical manifestation is required in order to stratify affected patients for therapy. We report on MRI findings and clinical course of cerebral X-ALD in a young boy with a rare subtype of white matter demyelination.

19.
Neuropediatrics ; 45(5): 321-4, 2014 Oct.
Article En | MEDLINE | ID: mdl-24700154

A 4-year-old girl gradually lost her vision to become practically blind at the age of 10 years. Examinations at several medical centers had been unable to establish an etiology. Traditional investigation using cerebral magnetic resonance imaging (MRI) initially showed normal results; however, later on it showed progressive atrophy of both optical nerves without recognizable cause. Subsequently, MRI including adequate orbital sequences, contrast-enhanced sequences, and fat suppression demonstrated bilateral primary optic nerve sheath meningioma, a rare but treatable tumor of childhood. The patient underwent neurosurgery and to date retains minimal vision. Adequate neuroradiological investigation of unexplained optic atrophy is advocated.


Meningeal Neoplasms/complications , Meningioma/complications , Optic Nerve Neoplasms/complications , Vision Disorders/etiology , Child, Preschool , Female , Humans , Magnetic Resonance Imaging
20.
Pediatr Nephrol ; 29(9): 1607-15, 2014 Sep.
Article En | MEDLINE | ID: mdl-24664191

BACKGROUND: The aim of this study was to analyze the neurological involvement and outcome in pediatric patients with hemolytic uremic syndrome (HUS) during the 2011 epidemic caused by Escherichia coli O104:H4. METHODS: Clinical data and data from magnetic resonance imaging (MRI) scans and electroencephalography (EEG) during the acute phase of the disease and during follow-up at 3 and 6 months were analyzed in 50 patients. Twenty-five of these patients underwent neuropsychological testing (WISC IV) during follow-up. RESULTS: Neurological involvement (stupor or coma, seizures, visual disturbances, paresis, myocloni) was initially observed in 14/50 (28%) patients. One patient died. EEG abnormalities were more frequent in patients with neurological involvement than in those without (12/14 vs. 13/25, respectively). Cranial MRI scans were analyzed in nine patients with neurological involvement, of whom five showed abnormal findings. At the 3- and 6-month follow-ups, EEG abnormalities were found in 14/40 (35%) and 7/36 (19%) patients, respectively, whereas 28/42 (67%) and 17/39 (44%) patients, respectively, complained about on-going reduced performance. Neuropsychological testing showed a slightly lower global intelligence quotient in patients with neurological involvement versus those without (113.4 ± 2.8 vs. 119.4 ± 1.8, respectively). CONCLUSIONS: Neurological involvement was frequent in our cohort. Accordingly, the incidence of pathological EEG findings was high, even in patients without clinical signs of neurological involvement. Nevertheless, major neurological sequelae were rare, and neuropsychological outcome was favorable after 6 months.


Central Nervous System Diseases/epidemiology , Central Nervous System Diseases/microbiology , Escherichia coli Infections/complications , Hemolytic-Uremic Syndrome/complications , Adolescent , Central Nervous System Diseases/physiopathology , Child , Child, Preschool , Electroencephalography , Female , Hemolytic-Uremic Syndrome/microbiology , History, Ancient , Humans , Magnetic Resonance Imaging , Male
...