Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 34(9): R346-R348, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38714161

ABSTRACT

Animals including humans often react to sounds by involuntarily moving their face and body. A new study shows that facial movements provide a simple and reliable readout of a mouse's hearing ability that is more sensitive than traditional measurements.


Subject(s)
Face , Animals , Mice , Face/physiology , Auditory Perception/physiology , Hearing/physiology , Sound , Movement/physiology , Humans
2.
Curr Biol ; 32(22): 4925-4940.e6, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36283411

ABSTRACT

Many of the sensations experienced by an organism are caused by their own actions, and accurately anticipating both the sensory features and timing of self-generated stimuli is crucial to a variety of behaviors. In the auditory cortex, neural responses to self-generated sounds exhibit frequency-specific suppression, suggesting that movement-based predictions may be implemented early in sensory processing. However, it remains unknown whether this modulation results from a behaviorally specific and temporally precise prediction, nor is it known whether corresponding expectation signals are present locally in the auditory cortex. To address these questions, we trained mice to expect the precise acoustic outcome of a forelimb movement using a closed-loop sound-generating lever. Dense neuronal recordings in the auditory cortex revealed suppression of responses to self-generated sounds that was specific to the expected acoustic features, to a precise position within the movement, and to the movement that was coupled to sound during training. Prediction-based suppression was concentrated in L2/3 and L5, where deviations from expectation also recruited a population of prediction-error neurons that was otherwise unresponsive. Recording in the absence of sound revealed abundant movement signals in deep layers that were biased toward neurons tuned to the expected sound, as well as expectation signals that were present throughout the cortex and peaked at the time of expected auditory feedback. Together, these findings identify distinct populations of auditory cortical neurons with movement, expectation, and error signals consistent with a learned internal model linking an action to its specific acoustic outcome.


Subject(s)
Auditory Cortex , Mice , Animals , Auditory Cortex/physiology , Acoustic Stimulation/methods , Sound , Neurons/physiology , Movement , Auditory Perception/physiology
3.
Curr Biol ; 31(4): R197-R199, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33621508

ABSTRACT

Most binocular neurons in the mammalian visual cortex show matched selectivity for light stimuli presented through either eye. A recent study tracked the responses of individual neurons in early visual cortex over time, revealing that matched binocular selectivity develops through major rearrangements of binocular visual circuits.


Subject(s)
Neurons/physiology , Vision, Binocular/physiology , Visual Cortex/cytology , Visual Cortex/physiology , Animals , Humans , Neural Pathways , Photic Stimulation
4.
J Neurosci ; 40(46): 8883-8899, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33051348

ABSTRACT

Binocular disparity, the difference between the two eyes' images, is a powerful cue to generate the 3D depth percept known as stereopsis. In primates, binocular disparity is processed in multiple areas of the visual cortex, with distinct contributions of higher areas to specific aspects of depth perception. Mice, too, can perceive stereoscopic depth, and neurons in primary visual cortex (V1) and higher-order, lateromedial (LM) and rostrolateral (RL) areas were found to be sensitive to binocular disparity. A detailed characterization of disparity tuning across mouse visual areas is lacking, however, and acquiring such data might help clarifying the role of higher areas for disparity processing and establishing putative functional correspondences to primate areas. We used two-photon calcium imaging in female mice to characterize the disparity tuning properties of neurons in visual areas V1, LM, and RL in response to dichoptically presented binocular gratings, as well as random dot correlograms (RDC). In all three areas, many neurons were tuned to disparity, showing strong response facilitation or suppression at optimal or null disparity, respectively, even in neurons classified as monocular by conventional ocular dominance (OD) measurements. Neurons in higher areas exhibited broader and more asymmetric disparity tuning curves compared with V1, as observed in primate visual cortex. Finally, we probed neurons' sensitivity to true stereo correspondence by comparing responses to correlated RDC (cRDC) and anticorrelated RDC (aRDC). Area LM, akin to primate ventral visual stream areas, showed higher selectivity for correlated stimuli and reduced anticorrelated responses, indicating higher-level disparity processing in LM compared with V1 and RL.SIGNIFICANCE STATEMENT A major cue for inferring 3D depth is disparity between the two eyes' images. Investigating how binocular disparity is processed in the mouse visual system will not only help delineating the role of mouse higher areas for visual processing, but also shed light on how the mammalian brain computes stereopsis. We found that binocular integration is a prominent feature of mouse visual cortex, as many neurons are selectively and strongly modulated by binocular disparity. Comparison of responses to correlated and anticorrelated random dot correlograms (RDC) revealed that lateromedial area (LM) is more selective to correlated stimuli, while less sensitive to anticorrelated stimuli compared with primary visual cortex (V1) and rostrolateral area (RL), suggesting higher-level disparity processing in LM, resembling primate ventral visual stream areas.


Subject(s)
Vision Disparity/physiology , Vision, Binocular/physiology , Visual Cortex/physiology , Animals , Brain Mapping , Eye Movements/physiology , Female , Mice , Mice, Inbred C57BL , Neuroimaging , Photic Stimulation , Visual Fields , Visual Pathways/physiology
5.
Curr Biol ; 29(17): 2954-2960.e5, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31422884

ABSTRACT

Depth perception is a fundamental feature of many visual systems across species. It is relevant for crucial behaviors, like spatial orientation, prey capture, and predator detection. Binocular disparity, the difference between left and right eye images, is a powerful cue for depth perception, as it depends on an object's distance from the observer [1,2]. In primates, neurons sensitive to binocular disparity are found throughout most of the visual cortex, with distinct disparity tuning properties across primary and higher visual areas, suggesting specific roles of different higher areas for depth perception [1-3]. Mouse primary visual cortex (V1) has been shown to contain disparity-tuned neurons, similar to those found in other mammals [4,5], but it is unknown how binocular disparity is processed beyond V1 and whether it is differentially represented in higher areas. Beyond V1, higher-order, lateromedial (LM) and rostrolateral (RL) areas contain the largest representation of the binocular visual field [6,7], making them candidate areas for investigating downstream processing of binocular disparity in mouse visual cortex. In turn, comparison of disparity tuning across different mouse visual areas might help delineating their functional specializations, which are not well understood. We find clear differences in neurons' preferred disparities across areas, suggesting that higher visual area RL is specialized for encoding visual stimuli very close to the mouse. Moreover, disparity preference is related to visual field elevation, likely reflecting an adaptation to natural image statistics. Our results reveal ethologically relevant areal specializations for binocular disparity processing across mouse visual cortex.


Subject(s)
Vision, Binocular/physiology , Visual Cortex/physiology , Visual Fields/physiology , Visual Pathways/physiology , Age Factors , Animals , Female , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...