Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37503149

ABSTRACT

Here, we construct genome-scale maps for R-loops, three-stranded nucleic acid structures comprised of a DNA/RNA hybrid and a displaced single strand of DNA, in the proliferative and differentiated zones of the human prenatal brain. We show that R-loops are abundant in the progenitor-rich germinal matrix, with preferential formation at promoters slated for upregulated expression at later stages of differentiation, including numerous neurodevelopmental risk genes. RNase H1-mediated contraction of the genomic R-loop space in neural progenitors shifted differentiation toward the neuronal lineage and was associated with transcriptomic alterations and defective functional and structural neuronal connectivity in vivo and in vitro. Therefore, R-loops are important for fine-tuning differentiation-sensitive gene expression programs of neural progenitor cells.

2.
Cell Stem Cell ; 29(4): 559-576.e7, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35325615

ABSTRACT

Pluripotent stem-cell-derived cardiomyocytes (PSC-CMs) provide an unprecedented opportunity to study human heart development and disease, but they are functionally and structurally immature. Here, we induce efficient human PSC-CM (hPSC-CM) maturation through metabolic-pathway modulations. Specifically, we find that peroxisome-proliferator-associated receptor (PPAR) signaling regulates glycolysis and fatty acid oxidation (FAO) in an isoform-specific manner. While PPARalpha (PPARa) is the most active isoform in hPSC-CMs, PPARdelta (PPARd) activation efficiently upregulates the gene regulatory networks underlying FAO, increases mitochondrial and peroxisome content, enhances mitochondrial cristae formation, and augments FAO flux. PPARd activation further increases binucleation, enhances myofibril organization, and improves contractility. Transient lactate exposure, which is frequently used for hPSC-CM purification, induces an independent cardiac maturation program but, when combined with PPARd activation, still enhances oxidative metabolism. In summary, we investigate multiple metabolic modifications in hPSC-CMs and identify a role for PPARd signaling in inducing the metabolic switch from glycolysis to FAO in hPSC-CMs.


Subject(s)
Induced Pluripotent Stem Cells , PPAR delta , Pluripotent Stem Cells , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , PPAR delta/metabolism
3.
Hippocampus ; 29(4): 366-377, 2019 04.
Article in English | MEDLINE | ID: mdl-30252982

ABSTRACT

The hippocampus of rodents undergoes structural remodeling throughout adulthood, including the addition of new neurons. Adult neurogenesis is sensitive to environmental enrichment and stress. Microglia, the brain's resident immune cells, are involved in adult neurogenesis by engulfing dying new neurons. While previous studies using laboratory environmental enrichment have investigated alterations in brain structure and function, they do not provide an adequate reflection of living in the wild, in which stress and environmental instability are common. Here, we compared mice living in standard laboratory settings to mice living in outdoor enclosures to assess the complex interactions among environment, gut infection, and hippocampal plasticity. We infected mice with parasitic worms and studied their effects on adult neurogenesis, microglia, and functions associated with the hippocampus, including cognition and anxiety regulation. We found an increase in immature neuron numbers of mice living in outdoor enclosures regardless of infection. While outdoor living prevented increases in microglial reactivity induced by infection in both the dorsal and ventral hippocampus, outdoor mice with infection had fewer microglia and microglial processes in the ventral hippocampus. We observed no differences in cognitive performance on the hippocampus-dependent object location task between infected and uninfected mice living in either setting. However, we found that infection caused an increase in anxiety-like behavior in the open field test but only in outdoor mice. These findings suggest that living conditions, as well as gut infection, interact to produce complex effects on brain structure and function.


Subject(s)
Behavior, Animal/physiology , Hippocampus/physiology , Housing, Animal , Nematode Infections/pathology , Animals , Anxiety/pathology , Anxiety/physiopathology , Female , Hippocampus/pathology , Hippocampus/physiopathology , Mice , Mice, Inbred C57BL , Microglia/pathology , Nematode Infections/physiopathology , Neurogenesis/physiology , Neuronal Plasticity/physiology , Neurons/pathology
4.
Science ; 362(6420)2018 12 14.
Article in English | MEDLINE | ID: mdl-30545851

ABSTRACT

To explore the developmental reorganization of the three-dimensional genome of the brain in the context of neuropsychiatric disease, we monitored chromosomal conformations in differentiating neural progenitor cells. Neuronal and glial differentiation was associated with widespread developmental remodeling of the chromosomal contact map and included interactions anchored in common variant sequences that confer heritable risk for schizophrenia. We describe cell type-specific chromosomal connectomes composed of schizophrenia risk variants and their distal targets, which altogether show enrichment for genes that regulate neuronal connectivity and chromatin remodeling, and evidence for coordinated transcriptional regulation and proteomic interaction of the participating genes. Developmentally regulated chromosomal conformation changes at schizophrenia-relevant sequences disproportionally occurred in neurons, highlighting the existence of cell type-specific disease risk vulnerabilities in spatial genome organization.


Subject(s)
Chromosomes, Human/chemistry , Connectome , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , Neural Stem Cells/cytology , Neurogenesis/genetics , Schizophrenia/genetics , Brain/growth & development , Brain/metabolism , Cells, Cultured , Chromatin/chemistry , Chromatin Assembly and Disassembly , Genome, Human , Genome-Wide Association Study , Humans , Male , Neural Stem Cells/metabolism , Neuroglia/cytology , Neurons/cytology , Neurons/metabolism , Nucleic Acid Conformation , Protein Interaction Maps/genetics , Proteomics , Risk , Transcription, Genetic , Transcriptome
5.
J Neurosci ; 38(41): 8889-8904, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30201764

ABSTRACT

Obesity affects >600 million people worldwide, a staggering number that appears to be on the rise. One of the lesser known consequences of obesity is its deleterious effects on cognition, which have been well documented across many cognitive domains and age groups. To investigate the cellular mechanisms that underlie obesity-associated cognitive decline, we used diet-induced obesity in male mice and found memory impairments along with reductions in dendritic spines, sites of excitatory synapses, increases in the activation of microglia, the brain's resident immune cells, and increases in synaptic profiles within microglia, in the hippocampus, a brain region linked to cognition. We found that partial knockdown of the receptor for fractalkine, a chemokine that can serve as a "find me" cue for microglia, prevented microglial activation and cognitive decline induced by obesity. Furthermore, we found that pharmacological inhibition of microglial activation in obese mice was associated with prevention of both dendritic spine loss and cognitive degradation. Finally, we observed that pharmacological blockade of microglial phagocytosis lessened obesity-associated cognitive decline. These findings suggest that microglia play an active role in obesity-associated cognitive decline by phagocytosis of synapses that are important for optimal function.SIGNIFICANCE STATEMENT Obesity in humans correlates with reduced cognitive function. To investigate the cellular mechanisms underlying this, we used diet-induced obesity in mice and found impaired performance on cognitive tests of hippocampal function. These deficits were accompanied by reduced numbers of dendritic spines, increased microglial activation, and increased synaptic profiles within microglia. Inhibition of microglial activation by transgenic and pharmacological methods prevented cognitive decline and dendritic spine loss in obese mice. Moreover, pharmacological inhibition of the phagocytic activity of microglia was also sufficient to prevent cognitive degradation. This work suggests that microglia may be responsible for obesity-associated cognitive decline and dendritic spine loss.


Subject(s)
Cognitive Dysfunction/physiopathology , Dendritic Spines/physiology , Hippocampus/physiopathology , Microglia/physiology , Obesity/physiopathology , Obesity/psychology , Animals , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/physiology , Cognitive Dysfunction/immunology , Dendritic Spines/immunology , Diet, High-Fat , Gene Knockdown Techniques , Hippocampus/immunology , Male , Memory/physiology , Mice, Inbred C57BL , Mice, Transgenic , Microglia/immunology , Obesity/immunology , Phagocytosis
6.
Front Pediatr ; 6: 82, 2018.
Article in English | MEDLINE | ID: mdl-29666786

ABSTRACT

Human-induced pluripotent stem cells (hiPSCs) have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional "mini-brains" and clustered, regularly interspersed short palindromic repeats (CRISPR)-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson's disease, and consider the future of this groundbreaking research.

7.
Proc Natl Acad Sci U S A ; 112(51): 15731-6, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26644559

ABSTRACT

Obesity is a major public health problem affecting overall physical and emotional well-being. Despite compelling data suggesting an association between obesity and cognitive dysfunction, this phenomenon has received relatively little attention. Neuroimaging studies in obese humans report reduced size of brain regions involved in cognition, but few studies have investigated the cellular processes underlying cognitive decline in obesity or the influence of obesity on cognition in the absence of obesity-related illnesses. Here, a rat model of diet-induced obesity was used to explore changes in brain regions important for cognition. Obese rats showed deficits on cognitive tasks requiring the prefrontal and perirhinal cortex. Cognitive deficits were accompanied by decreased dendritic spine density and synaptic marker expression in both brain regions. Microglial morphology was also changed in the prefrontal cortex. Detrimental changes in the prefrontal cortex and perirhinal cortex occurred before metabolic syndrome or diabetes, suggesting that these brain regions may be particularly vulnerable to early stage obesity.


Subject(s)
Cognition Disorders/etiology , Microglia/pathology , Obesity/complications , Synapses/physiology , Animals , Anxiety/etiology , Cell Shape , Dendrites/pathology , Disease Models, Animal , Male , Obesity/pathology , Obesity/physiopathology , Prefrontal Cortex/pathology , Rats , Rats, Sprague-Dawley , Synapses/chemistry
8.
Neurobiol Learn Mem ; 125: 73-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26188276

ABSTRACT

The medial prefrontal cortex is important for cognitive flexibility, a capability that is affected by environmental conditions and specific experiences. Aversive experience, such as chronic restraint stress, is known to impair performance on a task of cognitive flexibility, specifically attentional set-shifting, in rats. Concomitant with this performance decrement, chronic stress reduces the number of dendritic spines on pyramidal neurons in the medial prefrontal cortex. No previous studies have examined whether a rewarding experience, namely mating, affects cognitive flexibility and dendritic spines in the medial prefrontal cortex of male rats. To test this possibility, we exposed adult male rats to sexual receptive females once daily for one week, assessed attentional set-shifting performance, and then analyzed their brains for changes in dendritic spines. We found that sexual experience improved performance on extradimensional set-shifting, which is known to require the medial prefrontal cortex. Additionally, we observed increased dendritic spine density on apical and basal dendrites of pyramidal neurons in the medial prefrontal cortex, but not the orbitofrontal cortex, after sexual experience. We also found that sexual experience enhanced dendritic spine density on granule neurons of the dentate gyrus. The ventral hippocampus sends a direct projection to the medial prefrontal cortex, raising the possibility that experience-dependent changes in the hippocampus are necessary for alterations in medial prefrontal cortex structure and function. As a first attempt at investigating this, we inactivated the ventral hippocampus with the GABA agonist muscimol, after each daily bout of sexual experience to observe whether the beneficial effects on cognitive flexibility were abolished. Contrary to our hypothesis, blocking hippocampal activity after sexual experience had no impact on enhanced cognitive flexibility. Taken together, these findings indicate that sexual experience enhances medial prefrontal cortex dendritic spine density and cognitive flexibility but that these effects may not require continual input from the hippocampus.


Subject(s)
Cognition/physiology , Dendritic Spines/physiology , Prefrontal Cortex/physiology , Set, Psychology , Sexual Behavior, Animal/physiology , Animals , Attention/physiology , Cell Shape/physiology , Dendrites/physiology , Female , Male , Pyramidal Cells/physiology , Rats , Rats, Sprague-Dawley
9.
PLoS One ; 10(5): e0124859, 2015.
Article in English | MEDLINE | ID: mdl-25938418

ABSTRACT

Physical exercise enhances a wide range of cognitive functions in humans. Running-induced cognitive enhancement has also been demonstrated in rodents but with a strong emphasis on tasks that require the hippocampus. Additionally, studies designed to identify mechanisms that underlie cognitive enhancement with physical exercise have focused on running-induced changes in neurons with little attention paid to such changes in astrocytes. To further our understanding of how the brain changes with physical exercise, we investigated whether running alters performance on cognitive tasks that require the prefrontal cortex and whether any such changes are associated with astrocytic, as well as neuronal, plasticity. We found that running enhances performance on cognitive tasks known to rely on the prefrontal cortex. By contrast, we found no such improvement on a cognitive task known to rely on the perirhinal cortex. Moreover, we found that running enhances synaptic, dendritic and astrocytic measures in several brain regions involved in cognition but that changes in the latter measures were more specific to brain regions associated with cognitive improvements. These findings suggest that physical exercise induces widespread plasticity in both neuronal and nonneuronal elements and that both types of changes may be involved in running-induced cognitive enhancement.


Subject(s)
Astrocytes/metabolism , Biomarkers/metabolism , Cognition/physiology , Physical Conditioning, Animal , Prefrontal Cortex/physiology , Synapses/metabolism , Animals , Aquaporin 4/metabolism , Dendritic Spines/metabolism , Male , Memory , Motor Activity , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL