Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Health Sci Rep ; 7(9): e70091, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39328981

ABSTRACT

Background and aims: This study investigated the biochemical components present in the leaves of Cissus assamica. The primary aim was to analyze these components using advanced techniques and assess their potential therapeutic applications. Methodology: Fourier Transform Infrared (FT-IR) spectroscopy, Gas Chromatography-Mass Spectrometry (GC-MS), and Mass Spectral analysis were employed to identify and characterize the compounds in Cissus assamica leaves. The mass spectra of each compound were compared with data from the Wiley and NIST libraries to determine their names, molecular masses, and chemical structures. FT-IR analysis identified characteristic functional groups by their specific frequencies. Results and discussion: FT-IR spectroscopic analysis revealed significant molecular vibrations at frequencies of 3265.63, 2853.81, 1638.60, 1469.21, and 1384.95 cm⁻¹, indicating the presence of specific functional groups. The GC-MS analysis identified distinct compounds, such as "aR-Turmerone," "Curlone," "7,8-Epoxylanostan-11-ol, 3-acetoxy-," "13-Docosenamide, (Z)-," "Phenol, 3,5-bis(1,1-dimethylethyl)-," "9,19-Cyclolanostan-3-ol, 24,24-epoxymethano-, acetate," and "Quinoline-5,8-dione-6-ol, 7-[[(4-cyclohexylbutyl)amino]methyl]-." These compounds exhibited potential therapeutic applications. Their cytotoxic, antimicrobial, antidiarrheal, anti-hyperglycemic, and pain-relieving properties were evaluated by comparing them with reference ligands targeting specific receptors, including dihydrofolate reductase (DHFR), epidermal growth factor receptor (EGFR), kappa opioid receptor (KOR), glucose transporter 3 (GLUT 3), and cyclooxygenase 2 (COX-2). Conclusion: The results of this study suggest that Cissus assamica leaves contain bioactive compounds with potential therapeutic benefits for treating infections, diarrhea, hyperglycemia, and pain. However, further research is needed to conduct comprehensive phytochemical screening and establish the precise mechanisms of action for the crude extract or the plant-derived compounds.

2.
Heliyon ; 10(17): e37178, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39286063

ABSTRACT

Argemone mexicana L. is a medicinal plant, but its impact on Alzheimer's disease (AD) is right now undetermined. We intended to investigate the in-vitro anti-AD potential of leaves and flowers of A. mexicana methanol, ethanol, and ethyl extracts and to identify multi-modal anti-AD phytochemicals by computational approaches. Molecular docking of 196 phytochemicals identified three hit phytochemicals (protoberberine, protopine, and codeine) with higher binding affinity and multi-targeting ability toward AChE, BChE, BACE-1, and GSK-3ß. Further MM-GBSA assays confirmed the integrity of these phytochemicals as the hit phytochemicals. However, these phytochemicals demonstrated favorable pharmacokinetics (PK) and drugable properties having no toxicity. Molecular dynamics simulations confirmed the binding strength of the hit phytoconstituents in the active pockets of AChE, BChE, BACE-1, and GSK-3ß with multi-targeting inhibitory activities. All the extracts exhibited dose-dependent antioxidant and anti-cholinesterase activities supporting the in silico results in the context of oxidative stress and cholinergic pathways. Our results offer scientific validation of the anti-AD properties of Argemone mexicana L. and identified protoberberine, protopine, and codeine that could be used for the development of multi-modal inhibitors of AChE, BChE, BACE-1, and GSK-3ß to combat AD. Additional in vivo validation is recommended to ensure a thorough assessment in the present research.

3.
Heliyon ; 10(7): e28460, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38590868

ABSTRACT

The purpose of the current investigation was to conduct a detailed analysis of the chemical components and medicinal properties of the methanolic crude extract derived from the leaves of Cassia fistula. This analysis was carried out using both experimental (in vivo) and computational (in silico) methods. Eleven chemicals were chromatographically isolated using GC-MS/MS, which utilizes a library of NIST and Wiley 2020 versions. FTIR analysis of the extract was performed to identify the functional group of the compounds. The glucose-lowering capacity, analgesic, and anti-diarrheal activities of methanolic crude extract were analyzed utilizing a well-known oral glucose tolerance test, tail immersion method, writhing assay, and castor oil-induced diarrheal mice methods, respectively. After 60 min, 120 min, and 180 min of loading the drugs, a significant reduction of blood glucose levels was examined (p < 0.05) in all the extracts of this plant (200 mg/kg, 400 mg/kg and 600 mg/kg) utilized in this research at a time-dependent manner. Similarly, all the crude extracts showed significant (p < 0.05) effects against pain centrally and peripherally compared to the standard drug morphine (2 mg/kg bw) and diclofenac sodium (50 mg/kg bw). Moreover, the methanol extract (400 mg/kg bw) manifested anti-diarrheal efficacy by inhibiting 72.0 % of the diarrheal episode in mice compared to the standard drug loperamide (inhibition = 80.0%). The results of the computational investigations corroborated existing in-vivo findings. Greater or close to equivalent binding affinity to the active binding sites of kappa opioid receptor, glucose transporter 3 (GLUT 3), and cyclooxygenase 2 was indicative of the potential anti-diarrheal, hypoglycemic, and analgesic characteristics of the isolated compounds (COX-2). Moreover, anticancer and antimicrobial potentiality was also found impressive through evaluation of binding affinity with epidermal growth factor receptor (EGFR) and dihydrofolate reductase (DHFR) receptors. Results from this study indicated that C. fistula might be a beneficial natural resource for treating diarrhea, hyperglycemia, and pain. However, additional research is required to conduct a comprehensive phytochemical screening and establish precise action mechanisms of the crude extract or the plant-derived compounds.

4.
Sci Rep ; 12(1): 19137, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36352019

ABSTRACT

The plant growth-boosting biofilm-forming bacteria Bacillus pseudomycoides is able to promote growth and drought stress tolerance in wheat by suppressing the MYB gene, which synthesizes Myb protein (TaMpc1-D4) through secreted volatile compounds. In the present study, Triticum aestivum seeds were inoculated with five distinct bacterial strains. The growth, germination rate, root-shoot length, RWC, and chlorophyll content of seedlings were investigated. Furthermore, the levels of soluble sugars, proteins, H2O2, NO, cell death, and antioxidant enzymes (CAT, SOD, POD, and APX) were observed throughout the growth stage. All of the results showed that B. pseudomycoides had a substantially higher ability to form biofilm and promote these traits than the other strains. In terms of molecular gene expression, B. pseudomycoides inoculation strongly expressed the Dreb1 gene by silencing the expression of MYB gene through secreted volatile compounds. For identifying the specific volatile compound that silenced the MYB gene, molecular docking with Myb protein was performed. Out of 45 volatile compounds found, 2,6-ditert-butylcyclohexa-2,5-diene-1,4-dione and 3,5-ditert-butylphenol had a binding free energy of - 6.2 and - 6.5, Kcal/mol, respectively, which predicted that these compounds could suppress this protein's expression. In molecular dynamics simulations, the RMSD, SASA, Rg, RMSF, and hydrogen bonding values found assured the docked complexes' binding stability. These findings suggest that these targeted compounds may be suppressing Myb protein expression as well as the expression of Dreb1 and other drought response genes in wheat. More research (field trial) into plant growth and drought stress is needed to support the findings of this study.


Subject(s)
Droughts , Triticum , Hydrogen Peroxide/metabolism , Stress, Physiological/genetics , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL