Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Catal ; 14(16): 12006-12015, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39169903

ABSTRACT

Carbon nanodots (CNDs) are nanosized light-harvesters emerging as next-generation photosensitizers in photocatalytic reactions. Despite their ever-increasing potential applications, the intricacies underlying their photoexcited charge carrier dynamics are yet to be elucidated. In this study, nitrogen-doped graphitic CNDs (NgCNDs) are selectively excited in the presence of methyl viologen (MV2+, redox mediator) and different electron donors (EDs), namely ascorbic acid (AA) and ethylenediaminetetraacetic acid (EDTA). The consequent formation of the methyl viologen radical cation (MV•+) is investigated, and the excited charge carrier dynamics of the photocatalytic system are understood on a 0.1 ps-1 ms time range, providing spectroscopic evidence of oxidative or reductive quenching mechanisms experienced by optically excited NgCNDs (NgCNDs*) depending on the ED implemented. In the presence of AA, NgCNDs* undergo oxidative quenching by MV2+ to form MV•+, which is short-lived due to dehydroascorbic acid, a product of photoinduced hole quenching of oxidized NgCNDs. The EDTA-mediated reductive quenching of NgCNDs* is observed to be at least 2 orders of magnitude slower due to screening by EDTA-MV2+ complexes, but the MV•+ population is stable due to the irreversibly oxidized EDTA preventing a back reaction. In general, our methodology provides a distinct solution with which to study charge transfer dynamics in photocatalytic systems on an extended time range spanning 10 orders of magnitude. This approach generates a mechanistic understanding to select and develop suitable EDs to promote photocatalytic reactions.

2.
Nanoscale ; 15(38): 15775-15784, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37740380

ABSTRACT

Carbon dots (CDs) are low-cost light-absorbers in photocatalytic multicomponent systems, but their wide size distribution has hampered rational design and the identification of the factors that lead to their best performance. To address this challenge, we report herein the use of gel filtration size exclusion chromatography to separate amorphous, graphitic, and graphitic N-doped CDs depending on their lateral size to study the effect of their size on photocatalytic H2 evolution with a DuBois-type Ni cocatalyst. Transmission electron microscopy and dynamic light scattering confirm the size-dependent separation of the CDs, whereas UV-vis and fluorescence spectroscopy of the more monodisperse fractions show a distinct response which computational modelling attributes to a complex interplay between CD size and optical properties. A size-dependent effect on the photocatalytic H2 evolution performance of the CDs in combination with a molecular Ni cocatalyst is demonstrated with a maximum activity at approximately 2-3 nm CD diameter. Overall, size separation leads to a two-fold increase in the specific photocatalytic activity for H2 evolution using the monodisperse CDs compared to the as synthesized polydisperse samples, highlighting the size-dependent effect on photocatalytic performance.

3.
ACS Catal ; 13(13): 9090-9101, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37441232

ABSTRACT

Optical monitoring and screening of photocatalytic batch reactions using cuvettes ex situ is time-consuming, requires substantial amounts of samples, and does not allow the analysis of species with low extinction coefficients. Hollow-core photonic crystal fibers (HC-PCFs) provide an innovative approach for in situ reaction detection using ultraviolet-visible absorption spectroscopy, with the potential for high-throughput automation using extremely low sample volumes with high sensitivity for monitoring of the analyte. HC-PCFs use interference effects to guide light at the center of a microfluidic channel and use this to enhance detection sensitivity. They open the possibility of comprehensively studying photocatalysts to extract structure-activity relationships, which is unfeasible with similar reaction volume, time, and sensitivity in cuvettes. Here, we demonstrate the use of HC-PCF microreactors for the screening of the electron transfer properties of carbon dots (CDs), a nanometer-sized material that is emerging as a homogeneous light absorber in photocatalysis. The CD-driven photoreduction reaction of viologens (XV2+) to the corresponding radical monocation XV•+ is monitored in situ as a model reaction, using a sample volume of 1 µL per measurement and with a detectability of <1 µM. A range of different reaction conditions have been systematically studied, including different types of CDs (i.e., amorphous, graphitic, and graphitic nitrogen-doped CDs), surface chemistry, viologens, and electron donors. Furthermore, the excitation irradiance was varied to study its effect on the photoreduction rate. The findings are correlated with the electron transfer properties of CDs based on their electronic structure characterized by soft X-ray absorption spectroscopy. Optofluidic microreactors with real-time optical detection provide unique insight into the reaction dynamics of photocatalytic systems and could form the basis of future automated catalyst screening platforms, where samples are only available on small scales or at a high cost.

4.
Anal Chem ; 93(2): 895-901, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33315379

ABSTRACT

Performing quantitative in situ spectroscopic analysis on minuscule sample volumes is a common difficulty in photochemistry. To address this challenge, we use a hollow-core photonic crystal fiber (HC-PCF) that guides light at the center of a microscale liquid channel and acts as an optofluidic microreactor with a reaction volume of less than 35 nL. The system was used to demonstrate in situ optical detection of photoreduction processes that are key components of many photocatalytic reaction schemes. The photoreduction of viologens (XV2+) to the radical XV•+ in a homogeneous mixture with carbon nanodot (CND) light absorbers is studied for a range of different carbon dots and viologens. Time-resolved absorption spectra, measured over several UV irradiation cycles, are interpreted with a quantitative kinetic model to determine photoreduction and photobleaching rate constants. The powerful combination of time-resolved, low-volume absorption spectroscopy and kinetic modeling highlights the potential of optofluidic microreactors as a highly sensitive, quantitative, and rapid screening platform for novel photocatalysts and flow chemistry in general.

SELECTION OF CITATIONS
SEARCH DETAIL