Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 77
1.
Mol Ther Methods Clin Dev ; 32(2): 101229, 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38533521

Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. In vivo strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.

2.
Neurotherapeutics ; 21(1): e00304, 2024 Jan.
Article En | MEDLINE | ID: mdl-38241155

This paper provides an overview of the different types of mitochondrial myopathies (MM), associated phenotypes, genotypes as well as a practical clinical approach towards disease diagnosis, surveillance, and management. nDNA-related MM are more common in pediatric-onset disease whilst mtDNA-related MMs are more frequent in adults. Genotype-phenotype correlation in MM is challenging due to clinical and genetic heterogeneity. The multisystemic nature of many MMs adds to the diagnostic challenge. Diagnostic approaches utilizing genetic sequencing with next generation sequencing approaches such as gene panel, exome and genome sequencing are available. This aids molecular diagnosis, heteroplasmy detection in MM patients and furthers knowledge of known mitochondrial genes. Precise disease diagnosis can end the diagnostic odyssey for patients, avoid unnecessary testing, provide prognosis, facilitate anticipatory management, and enable access to available therapies or clinical trials. Adjunctive tests such as functional and exercise testing could aid surveillance of MM patients. Management requires a multi-disciplinary approach, systemic screening for comorbidities, cofactor supplementation, avoidance of substances that inhibit the respiratory chain and exercise training. This update of the current understanding on MMs provides practical perspectives on current diagnostic and management approaches for this complex group of disorders.


Mitochondrial Diseases , Mitochondrial Myopathies , Humans , Child , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/genetics , Mitochondrial Myopathies/therapy , Mitochondria , High-Throughput Nucleotide Sequencing , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy
3.
J Cardiovasc Dev Dis ; 10(12)2023 Dec 13.
Article En | MEDLINE | ID: mdl-38132662

Ischemic stroke is a heterogeneous condition influenced by a combination of genetic and environmental factors. Recent advancements have explored genetics in relation to various aspects of ischemic stroke, including the alteration of individual stroke occurrence risk, modulation of treatment response, and effectiveness of post-stroke functional recovery. This article aims to review the recent findings from genetic studies related to various clinical and molecular aspects of ischemic stroke. The potential clinical applications of these genetic insights in stratifying stroke risk, guiding personalized therapy, and identifying new therapeutic targets are discussed herein.

4.
Muscle Nerve ; 67(4): 259-271, 2023 04.
Article En | MEDLINE | ID: mdl-36448457

Small-fiber neuropathy (SFN) is a disorder that exclusively affects the small nerve fibers, sparing the large nerve fibers. Thinly myelinated Aδ-fibers and unmyelinated C-fibers are damaged, leading to development of neuropathic pain, thermal dysfunction, sensory symptoms, and autonomic disturbances. Although many SFNs are secondary and due to immunological causes or metabolic disturbances, the etiology is unknown in up to half of the patients. Over the years, this proportion of "idiopathic SFN" has decreased, as familial and genetic causes have been discovered, thus shifting a proportion of once "idiopathic" cases to the genetic category. After the discovery of SCN9A-gene variants in 2012, SCN10A and SCN11A variants have been found to be pathogenic in SFN. With improved accessibility of SFN diagnostic tools and genetic tests, many non-SCN variants and genetically inherited systemic diseases involving the small nerve fibers have also been described, but only scattered throughout the literature. There are 80 SCN variants described as causing SFN, 8 genes causing hereditary sensory autonomic neuropathies (HSAN) described with pure SFN, and at least 7 genes involved in genetically inherited systemic diseases associated with SFN. This systematic review aims to consolidate and provide an updated overview on the genetic variants of SFN to date---SCN genes and beyond. Awareness of these genetic causes of SFN is imperative for providing treatment directions, prognostication, and management of expectations for patients and their health-care providers.


Neuralgia , Small Fiber Neuropathy , Humans , Small Fiber Neuropathy/pathology , Neuralgia/etiology , Nerve Fibers, Unmyelinated/pathology , Genetic Testing , Causality , NAV1.7 Voltage-Gated Sodium Channel/genetics
5.
BMC Pediatr ; 22(1): 601, 2022 10 17.
Article En | MEDLINE | ID: mdl-36253810

BACKGROUND: Emery-Dreifuss Muscular Dystrophy (EDMD) is an uncommon genetic disease among the group of muscular dystrophies. EDMD is clinically heterogeneous and resembles other muscular dystrophies. Mutation of the lamin A/C (LMNA) gene, which causes EDMD, also causes many other diseases. There is inter and intrafamilial variability in clinical presentations. Precise diagnosis can help in patient surveillance, especially before they present with cardiac problems. Hence, this paper shows how a molecular work-out by next-generation sequencing can help this group of disorders. CASE PRESENTATION: A 2-year-10-month-old Javanese boy presented to our clinic with weakness in lower limbs and difficulty climbing stairs. The clinical features of the boy were Gower's sign, waddling gait and high CK level. His father presented with elbow contractures and heels, toe walking and weakness of limbs, pelvic, and peroneus muscles. Exome sequencing on this patient detected a pathogenic variant in the LMNA gene (NM_170707: c.C1357T: NP_733821: p.Arg453Trp) that has been reported to cause Autosomal Dominant Emery-Dreifuss muscular dystrophy. Further examination showed total atrioventricular block and atrial fibrillation in the father. CONCLUSION: EDMD is a rare disabling muscular disease that poses a diagnostic challenge. Family history work-up and thorough neuromuscular physical examinations are needed. Early diagnosis is essential to recognize orthopaedic and cardiac complications, improving the clinical management and prognosis of the disease. Exome sequencing could successfully determine pathogenic variants to provide a conclusive diagnosis.


Autosomal Emery-Dreifuss Muscular Dystrophy , Muscular Dystrophies , Muscular Dystrophy, Emery-Dreifuss , Exome , Humans , Infant , Lamin Type A/genetics , Male , Muscle, Skeletal/pathology , Muscular Dystrophy, Emery-Dreifuss/diagnosis , Muscular Dystrophy, Emery-Dreifuss/genetics , Muscular Dystrophy, Emery-Dreifuss/pathology , Mutation
7.
Nat Genet ; 54(8): 1214-1226, 2022 08.
Article En | MEDLINE | ID: mdl-35864190

Cirrhosis is usually a late-onset and life-threatening disease characterized by fibrotic scarring and inflammation that disrupts liver architecture and function. While it is typically the result of alcoholism or hepatitis viral infection in adults, its etiology in infants is much less understood. In this study, we report 14 children from ten unrelated families presenting with a syndromic form of pediatric liver cirrhosis. By genome/exome sequencing, we found recessive variants in FOCAD segregating with the disease. Zebrafish lacking focad phenocopied the human disease, revealing a signature of altered messenger RNA (mRNA) degradation processes in the liver. Using patient's primary cells and CRISPR-Cas9-mediated inactivation in human hepatic cell lines, we found that FOCAD deficiency compromises the SKI mRNA surveillance pathway by reducing the levels of the RNA helicase SKIC2 and its cofactor SKIC3. FOCAD knockout hepatocytes exhibited lowered albumin expression and signs of persistent injury accompanied by CCL2 overproduction. Our results reveal the importance of FOCAD in maintaining liver homeostasis and disclose a possible therapeutic intervention point via inhibition of the CCL2/CCR2 signaling axis.


Liver Cirrhosis , Tumor Suppressor Proteins , Adult , Animals , Child , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Syndrome , Tumor Suppressor Proteins/genetics , Zebrafish/genetics
8.
CRISPR J ; 5(3): 358-363, 2022 06.
Article En | MEDLINE | ID: mdl-35580124

The concept of vulnerability has played an important role in theoretical bioethics as well as in numerous authoritative guidelines on research ethics. The concept helps to identify situations in which research participants and other individuals may be at a heightened risk of experiencing harm. However, existing guidance documents on the ethics of human germline gene editing largely fail to make any reference to considerations of vulnerability. In this article, we discuss this oversight and we highlight the role that vulnerability can play in ethical debates about human heritable genome editing. Future guidance documents on germline gene editing should pay attention to considerations of vulnerability and reference these appropriately.


CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Ethics, Research , Genome, Human/genetics , Germ Cells , Humans
9.
F1000Res ; 11: 148, 2022.
Article En | MEDLINE | ID: mdl-38009102

Background: Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the DMD gene. The full mutation spectrum of the DMD gene in Indonesian patients is currently unknown. Mutation-specific therapies are currently being developed, such as exon skipping or stop codon read-through therapy. This study was conducted with the aim of identifying the mutation spectrum of the DMD gene in Indonesia to guide future development and application of feasible therapeutic strategies. Methods: This study is a cross sectional study that enrolled 43 male patients with a clinical suspicion of DMD or BMD. Multiplex ligation-dependent probe amplification (MLPA) reaction was performed to screen for the common mutations in the DMD gene. Results: Out of 43 subjects, deletions accounted for 69.77% (n=30) cases, while duplications were found in 11.63% (n=5) cases. One novel duplication spanning exons 2 to 62 was identified. Deletion mutations clustered around the distal (66.67%) and proximal (26.67%) hot spot regions of the DMD gene while duplication mutations were observed solely at the proximal region. Two false positive cases of single exon deletion detected through MLPA were attributed to sequence mutations affecting primer ligation sites, confirming the need to validate all single exon deletions when using this screening method. Analysis of available maternal DNA samples showed that the rate of de novo mutations (48.15%) appears higher than expected in this population. Out of 31 patients who were classified as DMD based on clinical and genotype characterizations, 60.47% (n=26) of cases were suitable for exon skipping therapy. Conclusion: This is the first comprehensive study showing the feasibility of implementing the MLPA method for routine screening of DMD patients in Indonesia. This is also the first study showing the potential applicability of exon skipping therapy in the majority of DMD cases in the country.


Muscular Dystrophy, Duchenne , Humans , Male , Cross-Sectional Studies , Dystrophin/genetics , Gene Deletion , Indonesia , Muscular Dystrophy, Duchenne/genetics , Mutation/genetics
10.
Ann Neurol ; 91(1): 66-77, 2022 01.
Article En | MEDLINE | ID: mdl-34761434

OBJECTIVE: Small fiber neuropathy (SFN) is clinically and etiologically heterogeneous. Although autoimmunity has been postulated to be pathophysiologically important in SFN, few autoantibodies have been described. We aimed to identify autoantibodies associated with idiopathic SFN (iSFN) by a novel high-throughput protein microarray platform that captures autoantibodies expressed in the native conformational state. METHODS: Sera from 58 SFN patients and 20 age- and gender-matched healthy controls (HCs) were screened against >1,600 immune-related antigens. Fluorescent unit readout and postassay imaging were performed, followed by composite data normalization and protein fold change (pFC) analysis. Analysis of an independent validation cohort of 33 SFN patients against the same 20 HCs was conducted to identify reproducible proteins in both cohorts. RESULTS: Nine autoantibodies were screened with statistical significance and pFC criteria in both cohorts, with at least 50% change in serum levels. Three proteins showed consistently high fold changes in main and validation cohorts: MX1 (FC = 2.99 and 3.07, respectively, p = 0.003, q = 0.076), DBNL (FC = 2.11 and 2.16, respectively, p = 0.009, q < 0.003), and KRT8 (FC = 1.65 and 1.70, respectively, p = 0.043, q < 0.003). Further subgroup analysis into iSFN and SFN by secondary causes (secondary SFN) in the main cohort showed that MX1 is higher in iSFN compared to secondary SFN (FC = 1.61 vs 0.106, p = 0.009). INTERPRETATION: Novel autoantibodies MX1, DBNL, and KRT8 are found in iSFN. MX1 may allow diagnostic subtyping of iSFN patients. ANN NEUROL 2022;91:66-77.


Autoantibodies/immunology , Autoantigens/immunology , Small Fiber Neuropathy/immunology , Adult , Aged , Autoantibodies/blood , Cohort Studies , Female , Humans , Keratin-8/immunology , Male , Microfilament Proteins/immunology , Middle Aged , Myxovirus Resistance Proteins/immunology , Small Fiber Neuropathy/blood , src Homology Domains/immunology
11.
Hum Reprod ; 36(12): 3018-3027, 2021 11 18.
Article En | MEDLINE | ID: mdl-34665851

The National Academies of Sciences and Medicine 2020 consensus statement advocates the reinstatement of research in preconception heritable human genome editing (HHGE), despite the ethical concerns that have been voiced about interventions in the germline, and outlines criteria for its eventual clinical application to address monogenic disorders. However, the statement does not give adequate consideration to alternative technologies. Importantly, it omits comparison to fetal gene therapy (FGT), which involves gene modification applied prenatally to the developing fetus and which is better researched and less ethically contentious. While both technologies are applicable to the same monogenic diseases causing significant prenatal or early childhood morbidity, the benefits and risks of HHGE are distinct from FGT though there are important overlaps. FGT has the current advantage of a wealth of robust preclinical data, while HHGE is nascent technology and its feasibility for specific diseases still requires scientific proof. The ethical concerns surrounding each are unique and deserving of further discussion, as there are compelling arguments supporting research and eventual clinical translation of both technologies. In this Opinion, we consider HHGE and FGT through technical and ethical lenses, applying common ethical principles to provide a sense of their feasibility and acceptability. Currently, FGT is in a more advanced position for clinical translation and may be less ethically contentious than HHGE, so it deserves to be considered as an alternative therapy in further discussions on HHGE implementation.


Gene Editing , Genome, Human , Child, Preschool , Embryo, Mammalian , Female , Fetus , Germ Cells , Humans , Pregnancy
12.
PLoS Genet ; 17(9): e1009741, 2021 09.
Article En | MEDLINE | ID: mdl-34499641

Much has been written about gene modifying technologies (GMTs), with a particularly strong focus on human germline genome editing (HGGE) sparked by its unprecedented clinical research application in 2018, shocking the scientific community. This paper applies political, ethical, and social lenses to aspects of HGGE to uncover previously underexplored considerations that are important to reflect on in global discussions. By exploring 4 areas-(1) just distribution of HGGE benefits through a realist lens; (2) HGGE through a national interest lens; (3) "broad societal consensus" through a structural injustice lens; and (4) HGGE through a scientific trustworthiness lens-a broader perspective is offered, which ultimately aims to enrich further debates and inform well-considered solutions for developments in this field. The application of these lenses also brings to light the fact that all discussions about scientific developments involve a conscious or unconscious application of a lens that shapes the direction of our thinking.


Ethics , Genome, Human , Germ-Line Mutation , Politics , Gene Editing , Humans
13.
Sci Rep ; 11(1): 16185, 2021 08 10.
Article En | MEDLINE | ID: mdl-34376746

Converging evidence suggests that oxytocin (OT) is associated with creative thinking (CT) and that release of OT depends on ADP ribosyl-cyclases (CD38 and CD157). Neural mechanisms of CT and OT show a strong association with dopaminergic (DA) pathways, yet the link between CT and CD38, CD157, dopamine receptor D2 (DRD2) and catechol-O-methyltransferase (COMT) peripheral gene expression remain inconclusive, thus limiting our understanding of the neurobiology of CT. To address this issue, two principal domains of CT, divergent thinking (AUT), were assessed. In men, both AUT is associated with gene expression of CD38, CD157, and their interaction CD38 × CD157. There were no significant associations for DA expression (DRD2, COMT, DRD2 × COMT) on both CT measures. However, analysis of the interactions of OT and DA systems reveal significant interactions for AUT in men. The full model explained a sizable 39% of the variance in females for the total CT score. The current findings suggest that OT and DA gene expression contributed significantly to cognition and CT phenotype. This provides the first empirical foundation of a more refined understanding of the molecular landscape of CT.


Cognition/drug effects , Creativity , Dopamine/pharmacology , Gene Expression Regulation/drug effects , Oxytocin/pharmacology , Saliva/metabolism , ADP-ribosyl Cyclase/genetics , ADP-ribosyl Cyclase/metabolism , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/metabolism , Adult , Antigens, CD/genetics , Antigens, CD/metabolism , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/metabolism , Dopamine Agents/pharmacology , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene-Environment Interaction , Humans , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Oxytocics/pharmacology , Polymorphism, Single Nucleotide , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Saliva/drug effects , Sex Factors , Young Adult
14.
Psychoneuroendocrinology ; 131: 105290, 2021 09.
Article En | MEDLINE | ID: mdl-34091402

Frontal brain asymmetry has been linked to motivational processes in infants and adults, with left lateralization reflecting motivation to approach and right lateralization reflecting motivation to withdraw. We examined the hypothesis that variability in infants' social motivation may be linked to genetic variation in the oxytocin system. Eleven-month-old infants' brain responses and looking preferences to smiling and frowning individuals were assessed in conjunction with a polymorphism in CD38 (rs3796863) linked to autism spectrum disorder (ASD) and reduced oxytocin. Frontal brain asymmetry and looking preferences differed as a function of CD38 genotype. While non-risk A-allele carriers displayed left lateralization to smiling faces (approach) and a heightened looking preference for the individual who smiled, infants with the CC (ASD risk) genotype displayed withdrawal from smiling faces and a preference for the individual who frowned. Findings demonstrate that the oxytocin system is linked to brain and behavioral markers of social motivation in infancy.


Motivation , Oxytocin , Brain/physiology , Genetic Variation , Humans , Infant , Motivation/genetics , Motivation/physiology , Oxytocin/genetics , Oxytocin/physiology
15.
Genet Test Mol Biomarkers ; 25(4): 293-301, 2021 Apr.
Article En | MEDLINE | ID: mdl-33877896

Background and Aim: Spinal muscular atrophy (SMA) is a lower motor neuron disease with autosomal recessive inheritance caused by homozygous SMN1 deletions. Although SMA has been considered as incurable, newly developed drugs improve life prognoses and motor functions of patients. To maximize the efficacy of the drugs, SMA patients should be treated before symptoms become apparent. Thus, newborn screening for SMA is strongly recommended. In this study, we aim to establish a new simple screening system based on DNA melting peak analysis. Materials and Methods: A total of 124 dried blood spot (DBS) on FTA® ELUTE cards (51 SMN1-deleted patients with SMA, 20 carriers, and 53 controls) were punched and subjected to direct amplification of SMN1 and CFTR (reference gene). Melting peak analyses were performed to detect SMN1 deletions from DBS samples. Results: A combination of allele-specific polymerase chain reaction (PCR) and melting peak analyses clearly distinguished the DBS samples with and without SMN1. Compared with the results of fresh blood samples, our new system yielded 100% sensitivity and specificity. The advantages of our system include (1) biosafe collection, transfer, and storage for DBS samples, (2) obviating the need for DNA extraction from DBS preventing contamination, (3) preclusion of fluorescent probes leading to low PCR cost, and (4) fast and high-throughput screening for SMN1 deletions. Conclusion: We demonstrate that our system would be applicable to a real-world newborn screening program for SMA, because our new technology is efficient for use in routine clinical laboratories that do not have highly advanced PCR instruments.


Muscular Atrophy, Spinal/genetics , Neonatal Screening/methods , Survival of Motor Neuron 1 Protein/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , DNA/genetics , Dried Blood Spot Testing/methods , Exons , Female , Gene Deletion , Gene Frequency , High-Throughput Screening Assays/methods , Humans , Infant, Newborn , Male , Muscular Atrophy, Spinal/blood , Muscular Atrophy, Spinal/diagnosis , Nucleic Acid Denaturation/genetics , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Survival of Motor Neuron 1 Protein/metabolism
16.
J Int Med Res ; 49(2): 300060520987789, 2021 Feb.
Article En | MEDLINE | ID: mdl-33557656

OBJECTIVE: Cluster genes, specifically the class 3 semaphorins (SEMA3) including SEMA3C, have been associated with the development of Hirschsprung disease (HSCR) in Caucasian populations. We aimed to screen for rare and common variants in SEMA3C in Indonesian patients with HSCR. METHODS: In this prospective clinical study, we analyzed SEMA3C gene variants in 55 patients with HSCR through DNA sequencing and bioinformatics analyses. RESULTS: Two variants in SEMA3C were found: p.Val337Met (rs1527482) and p.Val579 = (rs2272351). The rare variant rs1527482 (A) was significantly overrepresented in our HSCR patients (9.1%) compared with South Asian controls in the 1000 Genomes (4.7%) and Exome Aggregation Consortium (ExAC; 3.5%) databases. Our analysis using bioinformatics tools predicted this variant to be evolutionarily conserved and damaging to SEMA3C protein function. Although the frequency of the other variant, rs2272351 (G), also differed significantly in Indonesian patients with HSCR (27.3%) from that in South Asian controls in 1000 Genomes (6.2%) and ExAC (4.6%), it is a synonymous variant and not likely to affect protein function. CONCLUSIONS: This is the first comprehensive report of SEMA3C screening in patients of Asian ancestry with HSCR and identifies rs1527482 as a possible disease risk allele in this population.


Hirschsprung Disease , Semaphorins , Genetic Predisposition to Disease , Hirschsprung Disease/genetics , Humans , Indonesia , Prospective Studies , Proto-Oncogene Proteins c-ret/genetics , Semaphorins/genetics
17.
Brain Dev ; 43(2): 294-302, 2021 Feb.
Article En | MEDLINE | ID: mdl-33036822

BACKGROUND: Spinal muscular atrophy (SMA) is a neuromuscular disease caused by homozygous deletion of SMN1 exons 7 and 8. However, exon 8 is retained in some cases, where SMN2 exon 7 recombines with SMN1 exon 8, forming a hybrid SMN gene. It remains unknown how the hybrid SMN gene contribute to the SMA phenotype. METHOD: We analyzed 515 patients with clinical suspicion for SMA. SMN1 exons 7 and 8 deletion was detected by PCR followed by enzyme digestion. Hybrid SMN genes were further analyzed by nucleotide sequencing. SMN2 copy number was determined by real-time PCR. RESULTS: SMN1 exon 7 was deleted in 228 out of 515 patients, and SMN1 exon 8 was also deleted in 204 out of the 228 patients. The remaining 24 patients were judged to carry a hybrid SMN gene. In the patients with SMN1 exon 7 deletion, the frequency of the severe phenotype was significantly lower in the patients with hybrid SMN gene than in the patients without hybrid SMN gene. However, as for the distribution of SMN2 exon 7 copy number among the clinical phenotypes, there was no significant difference between both groups of SMA patients with or without hybrid SMN gene. CONCLUSION: Hybrid SMN genes are not rare in Japanese SMA patients, and it appears to be associated with a less severe phenotype. The phenotype of patients with hybrid SMN gene was determined by the copy number of SMN2 exon 7, as similarly for the patients without hybrid SMN gene.


Muscular Atrophy, Spinal/physiopathology , Survival of Motor Neuron 1 Protein/genetics , Base Sequence , Chimera/genetics , DNA Copy Number Variations/genetics , Exons/genetics , Female , Gene Deletion , Gene Dosage , Genotype , Humans , Japan/epidemiology , Male , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Phenotype , Polymerase Chain Reaction , Sequence Deletion , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/genetics
18.
Genes Chromosomes Cancer ; 60(2): 61-72, 2021 02.
Article En | MEDLINE | ID: mdl-33094510

Colorectal cancer (CRC) is a high incidence cancer and major cause of cancer mortality. Though disease-causing tumor suppressors for major syndromes are well characterized, about 10% of CRC is familial but without mutations in known tumor suppressors. We exhaustively screened 100 polyposis families for APC germline mutations and identified 13, which are APC mutation-negative, microsatellite-stable (MSS), and with undetectable mutation in known tumor suppressors. Whole exome sequencing in three probands uncovered two with germline frameshift NR0B2 mutations, c.293_301delTTGGGTTGGinsAC and c.227delT. Sanger Sequencing identified a third proband with NR0B2 c.157_166delCATCGCACCT frameshift mutation. All three mutations deleted the C-terminus activation/repression domain of NR0B2, thus are loss-of-function mutations. Real-time RT-PCR performed on tumor and matched mucosa of one patient revealed that NR0B2 downstream targets, SMAD3 was derepressed while GLI1 was downregulated in the colonic mucosa compared to healthy controls. Truncated NR0B2 molecule was predicted to have weakened binding with interacting partners SMAD3, GLI1, BCL2, and RXRα, implying perturbation of TGF-ß, Hedgehog, anti-apoptotic and nuclear hormone receptor signaling pathways. Immunostaining also revealed nuclear retention of the most severely truncated NR0B2 molecule compared to the wildtype. Microsatellite and sequencing analysis did not detect loss of wildtype allele in probands' tumors. The patient who acquired somatic KRAS mutation progressed rapidly whist the other two patients manifested with late-onset obesity and diabetes. We propose that haploinsufficiency of NR0B2 is associated with a novel CRC syndrome with metabolic phenotypes.


Carcinoma/genetics , Colorectal Neoplasms/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Adenomatous Polyposis Coli Protein/genetics , Adult , Age of Onset , Carcinoma/pathology , Colorectal Neoplasms/pathology , Female , Haploinsufficiency , Humans , Male , Microsatellite Repeats/genetics , Middle Aged , Mutation , Pedigree , Protein Binding , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Retinoid X Receptor alpha/metabolism , Smad3 Protein/metabolism , Zinc Finger Protein GLI1/metabolism
19.
Arch Dis Child ; 106(1): 31-37, 2021 01.
Article En | MEDLINE | ID: mdl-32819910

OBJECTIVE: Use next-generation sequencing (NGS) technology to improve our diagnostic yield in patients with suspected genetic disorders in the Asian setting. DESIGN: A diagnostic study conducted between 2014 and 2019 (and ongoing) under the Singapore Undiagnosed Disease Program. Date of last analysis was 1 July 2019. SETTING: Inpatient and outpatient genetics service at two large academic centres in Singapore. PATIENTS: Inclusion criteria: patients suspected of genetic disorders, based on abnormal antenatal ultrasound, multiple congenital anomalies and developmental delay. EXCLUSION CRITERIA: patients with known genetic disorders, either after clinical assessment or investigations (such as karyotype or chromosomal microarray). INTERVENTIONS: Use of NGS technology-whole exome sequencing (WES) or whole genome sequencing (WGS). MAIN OUTCOME MEASURES: (1) Diagnostic yield by sequencing type, (2) diagnostic yield by phenotypical categories, (3) reduction in time to diagnosis and (4) change in clinical outcomes and management. RESULTS: We demonstrate a 37.8% diagnostic yield for WES (n=172) and a 33.3% yield for WGS (n=24). The yield was higher when sequencing was conducted on trios (40.2%), as well as for certain phenotypes (neuromuscular, 54%, and skeletal dysplasia, 50%). In addition to aiding genetic counselling in 100% of the families, a positive result led to a change in treatment in 27% of patients. CONCLUSION: Genomic sequencing is an effective method for diagnosing rare disease or previous 'undiagnosed' disease. The clinical utility of WES/WGS is seen in the shortened time to diagnosis and the discovery of novel variants. Additionally, reaching a diagnosis significantly impacts families and leads to alteration in management of these patients.


Abnormalities, Multiple/genetics , Developmental Disabilities/genetics , High-Throughput Nucleotide Sequencing , Undiagnosed Diseases/genetics , Abnormalities, Multiple/diagnosis , Adolescent , Adult , Child , Child, Preschool , Developmental Disabilities/diagnosis , Female , Humans , Infant , Male , Singapore , Undiagnosed Diseases/diagnosis , Young Adult
20.
Behav Ther ; 51(6): 984-996, 2020 11.
Article En | MEDLINE | ID: mdl-33051039

Much research has demonstrated the beneficial effects of mindfulness-based stress reduction (MBSR) on psychological and physical health, but it is not known whether MBSR may impact cellular aging in healthy populations. Further, little research has evaluated MBSR against an active control condition, which precludes strong conclusions regarding the unique effects of mindfulness on psychological functioning. The present study examined the effects of MBSR versus music therapy-based stress reduction (MTSR) on trait mindfulness, self-compassion, and several psychological health outcomes, as well as leukocyte telomere length (LTL). One hundred and fifty eight Singaporean Chinese adults were recruited and randomly assigned to an eight-week MBSR or MTSR course. Participants provided blood samples and completed a battery of self-report measures pre- and post-intervention. Analyses showed that participants in the MBSR condition demonstrated significantly greater improvements in depressive symptoms, trait mindfulness, and self-compassion compared to the control condition. Treatment condition did not predict changes in LTL, anxiety, stress, or happiness, though there was a trend for duration of home mindfulness practice to predict increases in LTL. Overall, the study demonstrated MBSR's unique effects in reducing depressive symptoms. Improvements in trait mindfulness and self-compassion correspond with theorized mechanisms of change underlying mindfulness training. The lack of intervention effect with regards to LTL suggests that a more intensive intervention may be required for mindfulness to exert noticeable impact on aging at the cellular level, or that the effect may only emerge over a longer term.


Anxiety Disorders , Mindfulness , Stress, Psychological , Telomere , Adult , Anxiety , Anxiety Disorders/genetics , Anxiety Disorders/therapy , Humans , Stress, Psychological/genetics , Stress, Psychological/therapy , Treatment Outcome
...