Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 132(24): 246502, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949367

ABSTRACT

Disorder at etched edges of graphene quantum dots (GQD) enables random all-to-all interactions between localized charges in partially filled Landau levels, providing a potential platform to realize the Sachdev-Ye-Kitaev (SYK) model. We use quantum Hall edge states in the graphene electrodes to measure electrical conductance and thermoelectric power across the GQD. In specific temperature ranges, we observe a suppression of electric conductance fluctuations and slowly decreasing thermoelectric power across the GQD with increasing temperature, consistent with recent theory for the SYK regime.

2.
Nano Lett ; 22(24): 9869-9875, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36511693

ABSTRACT

In our work, we study the dynamics of a graphene Corbino disk supported by a gold mechanical resonator in the presence of a magnetic field. We demonstrate here that our graphene/gold mechanical structure exhibits a nontrivial resonance frequency dependence on the applied magnetic field, showing how this feature is indicative of the de Haas-van Alphen effect in the graphene Corbino disk. Relying on the mechanical resonances of the Au structure, our detection scheme is essentially independent of the material considered and can be applied for dHvA measurements on any conducting 2D material. In particular, the scheme is expected to be an important tool in studies of centrosymmetric transition metal dichalcogenide (TMD) crystals, shedding new light on hidden magnetization and interaction effects.

3.
Sci Rep ; 12(1): 12097, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35840599

ABSTRACT

We report charge and heat transport studies in copper-intercalated topological insulator Bi[Formula: see text]Se[Formula: see text] hybrid devices. Measured conductivity shows impact of quantum corrections, electron-electron and electron-phonon interactions. Our shot noise measurements reveal that heat flux displays a crossover between [Formula: see text] and [Formula: see text] with the increase of temperature. The results might be explained by a model of inelastic electron scattering on disorder, increasing the role of transverse acoustic phonons in the electron-phonon coupling process.

4.
Nano Lett ; 21(18): 7637-7643, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34491764

ABSTRACT

Low-frequency 1/f γ noise is ubiquitous, even in high-end electronic devices. Recently, it was found that adsorbed O2 molecules provide the dominant contribution to flux noise in superconducting quantum interference devices. To clarify the basic principles of such adsorbate noise, we have investigated low-frequency noise, while the mobility of surface adsorbates is varied by temperature. We measured low-frequency current noise in suspended monolayer graphene Corbino samples under the influence of adsorbed Ne atoms. Owing to the extremely small intrinsic noise of suspended graphene, we could resolve a combination of 1/f γ and Lorentzian noise induced by the presence of Ne. We find that the 1/f γ noise is caused by surface diffusion of Ne atoms and by temporary formation of few-Ne-atom clusters. Our results support the idea that clustering dynamics of defects is relevant for understanding of 1/f noise in metallic systems.

5.
Nanotechnology ; 30(25): 25LT01, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-30840930

ABSTRACT

We demonstrate a fabrication scheme for clean suspended structures using chemical-vapor-deposition-grown graphene and a dry transfer method on lift-off-resist-coated substrates to facilitate suspended graphene nanoelectronic devices for technological applications. It encompasses the demands for scalable fabrication as well as for ultra-fast response due to weak coupling to environment. The fabricated devices exhibited initially a weak field-effect response with substantial positive (p) doping which transformed into weak negative (n) doping upon current annealing at the temperature of 4 K. With increased annealing current, n-doping gradually decreased while the Dirac peak position approached zero in gate voltage. An ultra-low residual charge density of 9 × 108 cm-2 and a mobility of 1.9 × 105 cm2 V-1 s-1 were observed. Our samples display clear Fabry-Pérot (FP) conductance oscillation which indicates ballistic electron transport. The spacings of the FP oscillations are found to depend on the charge density in a manner that agrees with theoretical modeling based on Klein tunneling of Dirac particles. The ultra-low residual charge, the FP oscillations with density dependent period, and the high mobility prove the excellent quality of our suspended graphene devices. Owing to its simplicity, scalability and robustness, this fabrication scheme enhances possibilities for production of suspended, high-quality, two-dimensional-material structures for novel electronic applications.

6.
Nat Commun ; 9(1): 2776, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30018365

ABSTRACT

Competition between liquid and solid states in two-dimensional electron systems is an intriguing problem in condensed matter physics. We have investigated competing Wigner crystal and fractional quantum Hall (FQH) liquid phases in atomically thin suspended graphene devices in Corbino geometry. Low-temperature magnetoconductance and transconductance measurements along with IV characteristics all indicate strong charge density dependent modulation of electron transport. Our results show unconventional FQH phases which do not fit the standard Jain's series for conventional FQH states, instead they appear to originate from residual interactions of composite fermions in partially filled Landau levels. Also at very low charge density with filling factors [Formula: see text], electrons crystallize into an ordered Wigner solid which eventually transforms into an incompressible Hall liquid at filling factors around ν ≤ 1/7. Building on the unique Corbino sample structure, our experiments pave the way for enhanced understanding of the ordered phases of interacting electrons.

7.
Sci Rep ; 8(1): 594, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29330431

ABSTRACT

We have investigated tunneling current through a suspended graphene Corbino disk in high magnetic fields at the Dirac point, i.e. at filling factor ν = 0. At the onset of the dielectric breakdown the current through the disk grows exponentially before ohmic behaviour, but in a manner distinct from thermal activation. We find that Zener tunneling between Landau sublevels dominates, facilitated by tilting of the source-drain bias potential. According to our analytic modelling, the Zener tunneling is strongly affected by the gyrotropic force (Lorentz force) due to the high magnetic field.

8.
Nano Lett ; 14(6): 3009-13, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24842236

ABSTRACT

Using electrical transport experiments and shot noise thermometry, we find strong evidence that "supercollision" scattering processes by flexural modes are the dominant electron-phonon energy transfer mechanism in high-quality, suspended graphene around room temperature. The power law dependence of the electron-phonon coupling changes from cubic to quintic with temperature. The change of the temperature exponent by two is reflected in the quadratic dependence on chemical potential, which is an inherent feature of two-phonon quantum processes.

SELECTION OF CITATIONS
SEARCH DETAIL