Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Nat Genet ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937606

ABSTRACT

The factors driving or preventing pathological expansion of tandem repeats remain largely unknown. Here, we assessed the FGF14 (GAA)·(TTC) repeat locus in 2,530 individuals by long-read and Sanger sequencing and identified a common 5'-flanking variant in 70.34% of alleles analyzed (3,463/4,923) that represents the phylogenetically ancestral allele and is present on all major haplotypes. This common sequence variation is present nearly exclusively on nonpathogenic alleles with fewer than 30 GAA-pure triplets and is associated with enhanced stability of the repeat locus upon intergenerational transmission and increased Fiber-seq chromatin accessibility.

2.
Ann Clin Transl Neurol ; 11(6): 1636-1642, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700104

ABSTRACT

While biallelic POLR3A loss-of-function variants are traditionally linked to hypomyelinating leukodystrophy, patients with a specific splice variant c.1909+22G>A manifest as adolescent-onset spastic ataxia without overt leukodystrophy. In this study, we reported eight new cases, POLR3A-related disorder with c.1909+22 variant. One of these patients showed expanded phenotypic spectrum of generalised dystonia and her sister remained asymptomatic except for hypodontia. Two patients with dystonic arm tremor responded to deep brain stimulation. In our systemic literature review, we found that POLR3A-related disorder with c.1909+22 variant has attenuated disease severity but frequency of dystonia and upper limb tremor did not differ among genotypes.


Subject(s)
Deep Brain Stimulation , Dystonia , RNA Polymerase III , Humans , Female , RNA Polymerase III/genetics , Dystonia/genetics , Dystonia/therapy , Adolescent , Male , Muscle Spasticity/genetics , Muscle Spasticity/therapy , Adult , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/therapy , Spinocerebellar Ataxias/physiopathology , Young Adult , Child , Intellectual Disability , Optic Atrophy
3.
Neurol Genet ; 10(3): e200152, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685974

ABSTRACT

Objectives: To report novel biallelic PI4KA variants in a family presenting with pure hereditary spastic paraparesis. Methods: Two affected sisters presented with unsolved hereditary spastic paraparesis and underwent clinical and imaging assessments. This was followed by short-read next-generation sequencing. Results: Analysis of next-generation sequencing data uncovered compound heterozygous variants in PI4KA (NM_058004.4: c.[3883C>A];[5785A>C]; p.[(His1295Asn);(Thr1929Pro)]. Using ACMG guidelines, both variants were classified as likely pathogenic. Discussion: Here, next-generation sequencing revealed 2 novel compound heterozygous variants in the phosphatidylinositol 4-kinase alpha gene (PI4KA) in 2 sisters presenting with progressive pure hereditary spastic paraparesis. Pathogenic variants in PI4KA have previously been associated with a spectrum of disorders including autosomal recessive perisylvian polymicrogyria, with cerebellar hypoplasia, arthrogryposis, and pure spastic paraplegia. The cases presented in this study expand the phenotypic spectrum associated with PI4KA variants and contribute new likely pathogenic variants for testing in patients with otherwise unsolved hereditary spastic paraparesis.

4.
medRxiv ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38405699

ABSTRACT

Background: GAA-FGF14 ataxia (SCA27B) is a recently reported late-onset ataxia caused by a GAA repeat expansion in intron 1 of the FGF14 gene. Initial studies revealed cerebellar atrophy in 74-97% of patients. A more detailed brain imaging characterization of GAA-FGF14 ataxia is now needed to provide supportive diagnostic features and earlier disease recognition. Methods: We performed a retrospective review of the brain MRIs of 35 patients (median age at MRI 63 years; range 28-88 years) from Quebec (n=27), Nancy (n=3), Perth (n=3) and Bengaluru (n=2) to assess the presence of atrophy in vermis, cerebellar hemispheres, brainstem, cerebral hemispheres, and corpus callosum, as well as white matter involvement. Following the identification of the superior cerebellar peduncles (SCPs) involvement, we verified its presence in 54 GAA-FGF14 ataxia patients from four independent cohorts (Tübingen n=29; Donostia n=12; Innsbruck n=7; Cantabria n=6). To assess lobular atrophy, we performed quantitative cerebellar segmentation in 5 affected subjects with available 3D T1-weighted images and matched controls. Results: Cerebellar atrophy was documented in 33 subjects (94.3%). We observed SCP involvement in 22 subjects (62.8%) and confirmed this finding in 30/54 (55.6%) subjects from the validation cohorts. Cerebellar segmentation showed reduced mean volumes of lobules X and IV in the 5 affected individuals. Conclusions: Cerebellar atrophy is a key feature of GAA-FGF14 ataxia. The frequent SCP involvement observed in different cohorts may facilitate the diagnosis. The predominant involvement of lobule X correlates with the frequently observed downbeat nystagmus.

5.
Brain Commun ; 5(5): fcad239, 2023.
Article in English | MEDLINE | ID: mdl-37705681

ABSTRACT

Ashton C et al report a retrospective multi-centre cohort of 34 patients from Canada, France, Austria and Australia with spinocerebellar ataxia 27B, describing the common feature of episodic ataxia and other episodic features, as well as the inefficacy of acetazolamide in these patients.

6.
Brain Commun ; 5(4): fcad208, 2023.
Article in English | MEDLINE | ID: mdl-37621409

ABSTRACT

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome is a progressive, generally late-onset, neurological disorder associated with biallelic pentanucleotide expansions in Intron 2 of the RFC1 gene. The locus exhibits substantial genetic variability, with multiple pathogenic and benign pentanucleotide repeat alleles previously identified. To determine the contribution of pathogenic RFC1 expansions to neurological disease within an Australasian cohort and further investigate the heterogeneity exhibited at the locus, a combination of flanking and repeat-primed PCR was used to screen a cohort of 242 Australasian patients with neurological disease. Patients whose data indicated large gaps within expanded alleles following repeat-primed PCR, underwent targeted long-read sequencing to identify novel repeat motifs at the locus. To increase diagnostic yield, additional probes at the RFC1 repeat region were incorporated into the PathWest diagnostic laboratory targeted neurological disease gene panel to enable first-pass screening of the locus for all samples tested on the panel. Within the Australasian cohort, we detected known pathogenic biallelic expansions in 15.3% (n = 37) of patients. Thirty indicated biallelic AAGGG expansions, two had biallelic 'Maori alleles' [(AAAGG)exp(AAGGG)exp], two samples were compound heterozygous for the Maori allele and an AAGGG expansion, two samples had biallelic ACAGG expansions and one sample was compound heterozygous for the ACAGG and AAGGG expansions. Forty-five samples tested indicated the presence of biallelic expansions not known to be pathogenic. A large proportion (84%) showed complex interrupted patterns following repeat-primed PCR, suggesting that these expansions are likely to be comprised of more than one repeat motif, including previously unknown repeats. Using targeted long-read sequencing, we identified three novel repeat motifs in expanded alleles. Here, we also show that short-read sequencing can be used to reliably screen for the presence or absence of biallelic RFC1 expansions in all samples tested using the PathWest targeted neurological disease gene panel. Our results show that RFC1 pathogenic expansions make a substantial contribution to neurological disease in the Australasian population and further extend the heterogeneity of the locus. To accommodate the increased complexity, we outline a multi-step workflow utilizing both targeted short- and long-read sequencing to achieve a definitive genotype and provide accurate diagnoses for patients.

8.
bioRxiv ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37425777

ABSTRACT

The factors driving initiation of pathological expansion of tandem repeats remain largely unknown. Here, we assessed the FGF14 -SCA27B (GAA)•(TTC) repeat locus in 2,530 individuals by long-read and Sanger sequencing and identified a 5'-flanking 17-bp deletion-insertion in 70.34% of alleles (3,463/4,923). This common sequence variation was present nearly exclusively on alleles with fewer than 30 GAA-pure repeats and was associated with enhanced meiotic stability of the repeat locus.

9.
Front Immunol ; 14: 1153789, 2023.
Article in English | MEDLINE | ID: mdl-37063893

ABSTRACT

Introduction: Inclusion body myositis (IBM) is a progressive inflammatory myopathy characterised by skeletal muscle infiltration and myofibre invasion by CD8+ T lymphocytes. In some cases, IBM has been reported to be associated with a systemic lymphoproliferative disorder of CD8+ T cells exhibiting a highly differentiated effector phenotype known as T cell Large Granular Lymphocytic Leukemia (T-LGLL). Methods: We investigated the incidence of a CD8+ T-LGL lymphoproliferative disorder in 85 IBM patients and an aged-matched group of 56 Healthy Controls (HC). Further, we analysed the phenotypical characteristics of the expanded T-LGLs and investigated whether their occurrence was associated with any particular HLA alleles or clinical characteristics. Results: Blood cell analysis by flow cytometry revealed expansion of T-LGLs in 34 of the 85 (40%) IBM patients. The T cell immunophenotype of T-LGLHIGH patients was characterised by increased expression of surface molecules including CD57 and KLRG1, and to a lesser extent of CD94 and CD56 predominantly in CD8+ T cells, although we also observed modest changes in CD4+ T cells and γδ T cells. Analysis of Ki67 in CD57+ KLRG1+ T cells revealed that only a small proportion of these cells was proliferating. Comparative analysis of CD8+ and CD4+ T cells isolated from matched blood and muscle samples donated by three patients indicated a consistent pattern of more pronounced alterations in muscles, although not significant due to small sample size. In the T-LGLHIGH patient group, we found increased frequencies of perforin-producing CD8+ and CD4+ T cells that were moderately correlated to combined CD57 and KLRG1 expression. Investigation of the HLA haplotypes of 75 IBM patients identified that carriage of the HLA-C*14:02:01 allele was significantly higher in T-LGLHIGH compared to T-LGLLOW individuals. Expansion of T-LGL was not significantly associated with seropositivity patient status for anti-cytosolic 5'-nucleotidase 1A autoantibodies. Clinically, the age at disease onset and disease duration were similar in the T-LGLHIGH and T-LGLLOW patient groups. However, metadata analysis of functional alterations indicated that patients with expanded T-LGL more frequently relied on mobility aids than T-LGLLOW patients indicating greater disease severity. Conclusion: Altogether, these results suggest that T-LGL expansion occurring in IBM patients is correlated with exacerbated immune dysregulation and increased disease burden.


Subject(s)
Leukemia, Large Granular Lymphocytic , Myositis, Inclusion Body , Humans , CD8-Positive T-Lymphocytes , Myositis, Inclusion Body/metabolism , Muscle, Skeletal/metabolism , Phenotype , Patient Acuity
10.
Neuromuscul Disord ; 33(2): 161-168, 2023 02.
Article in English | MEDLINE | ID: mdl-36634413

ABSTRACT

Primary acetylcholine receptor deficiency is the most common subtype of congenital myasthenic syndrome, resulting in reduced amount of acetylcholine receptors expressed at the muscle endplate and impaired neuromuscular transmission. AChR deficiency is caused mainly by pathogenic variants in the ε-subunit of the acetylcholine receptor encoded by CHRNE, although pathogenic variants in other subunits are also seen. We report the clinical and molecular features of 13 patients from nine unrelated kinships with acetylcholine receptor deficiency harbouring the CHRNA1 variant NM_001039523.3:c.257G>A (p.Arg86His) in homozygosity or compound heterozygosity. This variant results in the inclusion of an alternatively-spliced evolutionary exon (P3A) that causes expression of a non-functional acetylcholine receptor α-subunit. We compare the clinical findings of this group to the other cases of acetylcholine receptor deficiency within our cohort. We report differences in phenotype, highlighting a predominant pattern of facial and distal weakness in adulthood, predominantly in the upper limbs, which is unusual for acetylcholine receptor deficiency syndromes, and more in keeping with slow-channel syndrome or distal myopathy. Finally, we stress the importance of including alternative exons in variant analysis to increase the probability of achieving a molecular diagnosis.


Subject(s)
Myasthenic Syndromes, Congenital , Receptors, Nicotinic , Humans , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/pathology , Exons/genetics , Phenotype , Mutation , Receptors, Nicotinic/genetics
11.
N Engl J Med ; 388(2): 128-141, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36516086

ABSTRACT

BACKGROUND: The late-onset cerebellar ataxias (LOCAs) have largely resisted molecular diagnosis. METHODS: We sequenced the genomes of six persons with autosomal dominant LOCA who were members of three French Canadian families and identified a candidate pathogenic repeat expansion. We then tested for association between the repeat expansion and disease in two independent case-control series - one French Canadian (66 patients and 209 controls) and the other German (228 patients and 199 controls). We also genotyped the repeat in 20 Australian and 31 Indian index patients. We assayed gene and protein expression in two postmortem cerebellum specimens and two induced pluripotent stem-cell (iPSC)-derived motor-neuron cell lines. RESULTS: In the six French Canadian patients, we identified a GAA repeat expansion deep in the first intron of FGF14, which encodes fibroblast growth factor 14. Cosegregation of the repeat expansion with disease in the families supported a pathogenic threshold of at least 250 GAA repeats ([GAA]≥250). There was significant association between FGF14 (GAA)≥250 expansions and LOCA in the French Canadian series (odds ratio, 105.60; 95% confidence interval [CI], 31.09 to 334.20; P<0.001) and in the German series (odds ratio, 8.76; 95% CI, 3.45 to 20.84; P<0.001). The repeat expansion was present in 61%, 18%, 15%, and 10% of French Canadian, German, Australian, and Indian index patients, respectively. In total, we identified 128 patients with LOCA who carried an FGF14 (GAA)≥250 expansion. Postmortem cerebellum specimens and iPSC-derived motor neurons from patients showed reduced expression of FGF14 RNA and protein. CONCLUSIONS: A dominantly inherited deep intronic GAA repeat expansion in FGF14 was found to be associated with LOCA. (Funded by Fondation Groupe Monaco and others.).


Subject(s)
Cerebellar Ataxia , DNA Repeat Expansion , Introns , Humans , Australia , Canada , Cerebellar Ataxia/genetics , Cerebellar Ataxia/pathology , Friedreich Ataxia/genetics , Friedreich Ataxia/pathology , Introns/genetics , DNA Repeat Expansion/genetics
12.
Genome Biol ; 23(1): 257, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36517892

ABSTRACT

Expansions of short tandem repeats (STRs) cause many rare diseases. Expansion detection is challenging with short-read DNA sequencing data since supporting reads are often mapped incorrectly. Detection is particularly difficult for "novel" STRs, which include new motifs at known loci or STRs absent from the reference genome. We developed STRling to efficiently count k-mers to recover informative reads and call expansions at known and novel STR loci. STRling is sensitive to known STR disease loci, has a low false discovery rate, and resolves novel STR expansions to base-pair position accuracy. It is fast, scalable, open-source, and available at: github.com/quinlan-lab/STRling .


Subject(s)
High-Throughput Nucleotide Sequencing , Microsatellite Repeats , Sequence Analysis, DNA
13.
J Neuromuscul Dis ; 9(5): 615-618, 2022.
Article in English | MEDLINE | ID: mdl-35754284

ABSTRACT

A 38-year-old pregnant woman presented at 30 weeks gestation in respiratory distress with pre-eclampsia. This was on the background of slowly progressive dyspnoea over six years, with generalised weakness and previous surgery for ptosis and prognathia. After successful caesarean delivery at 31 weeks, the patient was found to have a homozygous likely pathogenic variant in the MYOD1 gene. This case presents a milder phenotype for MYOD1 congenital myopathy, usually associated with diaphragmatic defects, respiratory insufficiency and dysmorphic facies. It also highlights the difficulties of managing an undiagnosed patient through pregnancy.


Subject(s)
Muscular Diseases , Respiratory Insufficiency , Female , Gestational Age , Humans , Muscle Weakness/complications , Muscular Diseases/genetics , Phenotype , Pregnancy , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/etiology
14.
Hum Mutat ; 43(9): 1216-1223, 2022 09.
Article in English | MEDLINE | ID: mdl-35485770

ABSTRACT

Neuregulin 1 signals are essential for the development and function of Schwann cells, which form the myelin sheath on peripheral axons. Disruption of myelin in the peripheral nervous system can lead to peripheral neuropathy, which is characterized by reduced axonal conduction velocity and sensorimotor deficits. Charcot-Marie-Tooth disease is a group of heritable peripheral neuropathies that may be caused by variants in nearly 100 genes. Despite the evidence that Neuregulin 1 is essential for many aspects of Schwann cell development, previous studies have not reported variants in the neuregulin 1 gene (NRG1) in patients with peripheral neuropathy. We have identified a rare missense variant in NRG1 that is homozygous in a patient with sensory and motor deficits consistent with mixed axonal and de-myelinating peripheral neuropathy. Our in vivo functional studies in zebrafish indicate that the patient variant partially reduces NRG1 function. This study tentatively suggests that variants at the NRG1 locus may cause peripheral neuropathy and that NRG1 should be investigated in families with peripheral neuropathy of unknown cause.


Subject(s)
Charcot-Marie-Tooth Disease , Neuregulin-1 , Animals , Axons , Charcot-Marie-Tooth Disease/genetics , Humans , Myelin Sheath , Neuregulin-1/genetics , Schwann Cells , Zebrafish/genetics
15.
Methods Protoc ; 4(4)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34698225

ABSTRACT

In inflammatory myopathies, the self-reactive immune cells involved in muscle aggression have been studied mostly using histological assessment of muscle biopsy sections; this methodology provides the advantage of visualizing and identifying cells within the tissue, but it does not allow further investigation. To gain access to live and isolated cells, many studies utilized blood samples; however, in the absence of biological tools to discriminate the leukocytes associated with the autoimmune process from those that emerged from responses against pathogens, the information observed on circulating immune cells often lacks in specificity, and thus result interpretation may prove difficult. In order to selectively retrieve self-reactive immune cells, we developed a protocol to isolate live leukocytes from human muscle biopsies, which allows for further analysis using a large range of methodologies. The protocol uses enzymatic digestion to release live leukocytes from freshly collected skeletal muscle samples, followed by filtration and separation of the leukocytes from the myocytes by density gradient centrifugation. The isolated cells can be submitted immediately to various analysis strategies to characterize ex vivo the specific cellular and molecular mechanisms responsible for self-directed immune muscle aggression or may be placed in culture for expansion.

16.
J Med Genet ; 58(9): 609-618, 2021 09.
Article in English | MEDLINE | ID: mdl-33060286

ABSTRACT

BACKGROUND: Fetal akinesia and arthrogryposis are clinically and genetically heterogeneous and have traditionally been refractive to genetic diagnosis. The widespread availability of affordable genome-wide sequencing has facilitated accurate genetic diagnosis and gene discovery in these conditions. METHODS: We performed next generation sequencing (NGS) in 190 probands with a diagnosis of arthrogryposis multiplex congenita, distal arthrogryposis, fetal akinesia deformation sequence or multiple pterygium syndrome. This sequencing was a combination of bespoke neurogenetic disease gene panels and whole exome sequencing. Only class 4 and 5 variants were reported, except for two cases where the identified variants of unknown significance (VUS) are most likely to be causative for the observed phenotype. Co-segregation studies and confirmation of variants identified by NGS were performed where possible. Functional genomics was performed as required. RESULTS: Of the 190 probands, 81 received an accurate genetic diagnosis. All except two of these cases harboured class 4 and/or 5 variants based on the American College of Medical Genetics and Genomics guidelines. We identified phenotypic expansions associated with CACNA1S, CHRNB1, GMPPB and STAC3. We describe a total of 50 novel variants, including a novel missense variant in the recently identified gene for arthrogryposis with brain malformations-SMPD4. CONCLUSIONS: Comprehensive gene panels give a diagnosis for a substantial proportion (42%) of fetal akinesia and arthrogryposis cases, even in an unselected cohort. Recently identified genes account for a relatively large proportion, 32%, of the diagnoses. Diagnostic-research collaboration was critical to the diagnosis and variant interpretation in many cases, facilitated genotype-phenotype expansions and reclassified VUS through functional genomics.


Subject(s)
Arthrogryposis/diagnosis , Arthrogryposis/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genomics , Phenotype , Alleles , Amino Acid Sequence , Amino Acid Substitution , Chromosome Mapping , Female , Genomics/methods , Genotype , High-Throughput Nucleotide Sequencing , Humans , Magnetic Resonance Imaging , Male , Mutation , Pedigree , Sequence Analysis, DNA , Exome Sequencing
17.
BMJ Open ; 10(12): e040230, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33334834

ABSTRACT

INTRODUCTION: Emerging evidence indicates that rehabilitation can improve ataxia, mobility and independence in everyday activities in individuals with hereditary cerebellar ataxia. However, with the rarity of the genetic ataxias and known recruitment challenges in rehabilitation trials, most studies have been underpowered, non-randomised or non-controlled. This study will be the first, appropriately powered randomised controlled trial to examine the efficacy of an outpatient and home-based rehabilitation programme on improving motor function for individuals with hereditary cerebellar ataxia. METHODS AND ANALYSIS: This randomised, single-blind, parallel group trial will compare a 30-week rehabilitation programme to standard care in individuals with hereditary cerebellar ataxia. Eighty individuals with a hereditary cerebellar ataxia, aged 15 years and above, will be recruited. The rehabilitation programme will include 6 weeks of outpatient land and aquatic physiotherapy followed immediately by a 24- week home exercise programme supported with fortnightly physiotherapy sessions. Participants in the standard care group will be asked to continue their usual physical activity. The primary outcome will be the motor domain of the Functional Independence Measure. Secondary outcomes will measure the motor impairment related to ataxia, balance, quality of life and cost-effectiveness. Outcomes will be administered at baseline, 7 weeks, 18 weeks and 30 weeks by a physiotherapist blinded to group allocation. A repeated measures mixed-effects linear regression model will be used to analyse the effect of the treatment group for each of the dependent continuous variables. The primary efficacy analysis will follow the intention-to-treat principle. ETHICS AND DISSEMINATION: The study has been approved by the Monash Health Human Research Ethics Committee (HREC/18/MonH/418) and the Human Research Ethics Committee of the Northern Territory Department of Health and Menzies School of Health Research (2019/3503). Results will be published in peer-reviewed journals, presented at national and/or international conferences and disseminated to Australian ataxia support groups. TRIAL REGISTRATION NUMBER: ACTRN12618000908235.


Subject(s)
Cerebellar Ataxia , Outpatients , Physical Therapy Modalities , Quality of Life , Adolescent , Ataxia , Australia , Cerebellar Ataxia/rehabilitation , Exercise Therapy , Humans , Randomized Controlled Trials as Topic , Single-Blind Method
18.
Neurology ; 95(24): e3163-e3179, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33144514

ABSTRACT

OBJECTIVE: To test the hypothesis that monogenic neuropathies such as Charcot-Marie-Tooth disease (CMT) contribute to frequent but often unexplained neuropathies in the elderly, we performed genetic analysis of 230 patients with unexplained axonal neuropathies and disease onset ≥35 years. METHODS: We recruited patients, collected clinical data, and conducted whole-exome sequencing (WES; n = 126) and MME single-gene sequencing (n = 104). We further queried WES repositories for MME variants and measured blood levels of the MME-encoded protein neprilysin. RESULTS: In the WES cohort, the overall detection rate for assumed disease-causing variants in genes for CMT or other conditions associated with neuropathies was 18.3% (familial cases 26.4%, apparently sporadic cases 12.3%). MME was most frequently involved and accounted for 34.8% of genetically solved cases. The relevance of MME for late-onset neuropathies was further supported by detection of a comparable proportion of cases in an independent patient sample, preponderance of MME variants among patients compared to population frequencies, retrieval of additional late-onset neuropathy patients with MME variants from WES repositories, and low neprilysin levels in patients' blood samples. Transmission of MME variants was often consistent with an incompletely penetrant autosomal-dominant trait and less frequently with autosomal-recessive inheritance. CONCLUSIONS: A detectable fraction of unexplained late-onset axonal neuropathies is genetically determined, by variants in either CMT genes or genes involved in other conditions that affect the peripheral nerves and can mimic a CMT phenotype. MME variants can act as completely penetrant recessive alleles but also confer dominantly inherited susceptibility to axonal neuropathies in an aging population.


Subject(s)
Aging , Hereditary Sensory and Motor Neuropathy/genetics , Neprilysin/genetics , Age of Onset , Aged , Aging/blood , Charcot-Marie-Tooth Disease/blood , Charcot-Marie-Tooth Disease/genetics , Female , Genetic Predisposition to Disease/genetics , Hereditary Sensory and Motor Neuropathy/blood , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Neprilysin/blood , Exome Sequencing
19.
Brain ; 143(10): 2904-2910, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33103729

ABSTRACT

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is a progressive late-onset, neurological disease. Recently, a pentanucleotide expansion in intron 2 of RFC1 was identified as the genetic cause of CANVAS. We screened an Asian-Pacific cohort for CANVAS and identified a novel RFC1 repeat expansion motif, (ACAGG)exp, in three affected individuals. This motif was associated with additional clinical features including fasciculations and elevated serum creatine kinase. These features have not previously been described in individuals with genetically-confirmed CANVAS. Haplotype analysis showed our patients shared the same core haplotype as previously published, supporting the possibility of a single origin of the RFC1 disease allele. We analysed data from >26 000 genetically diverse individuals in gnomAD to show enrichment of (ACAGG) in non-European populations.


Subject(s)
Asian People/genetics , Bilateral Vestibulopathy/genetics , Cerebellar Ataxia/genetics , DNA Repeat Expansion/genetics , Replication Protein C/genetics , Aged , Bilateral Vestibulopathy/complications , Bilateral Vestibulopathy/diagnosis , Cerebellar Ataxia/complications , Cerebellar Ataxia/diagnosis , Cohort Studies , Female , Humans , Indonesia , Male , Middle Aged , Pedigree
20.
Mol Diagn Ther ; 24(6): 641-652, 2020 12.
Article in English | MEDLINE | ID: mdl-32997275

ABSTRACT

The impact of high-throughput sequencing in genetic neuromuscular disorders cannot be overstated. The ability to rapidly and affordably sequence multiple genes simultaneously has enabled a second golden age of Mendelian disease gene discovery, with flow-on impacts for rapid genetic diagnosis, evidence-based treatment, tailored therapy development, carrier-screening, and prevention of disease recurrence in families. However, there are likely many more neuromuscular disease genes and mechanisms to be discovered. Many patients and families remain without a molecular diagnosis following targeted panel sequencing, clinical exome sequencing, or even genome sequencing. Here we review how massively parallel, or next-generation, sequencing has changed the field of genetic neuromuscular disorders, and anticipate future benefits of recent technological innovations such as RNA-seq implementation and detection of tandem repeat expansions from short-read sequencing.


Subject(s)
Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/prevention & control , High-Throughput Nucleotide Sequencing , Neuromuscular Diseases/genetics , Neuromuscular Diseases/prevention & control , Consanguinity , Genetic Association Studies , Genetic Counseling , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/therapy , Humans , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...