Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
2.
Biophys Chem ; 300: 107075, 2023 09.
Article in English | MEDLINE | ID: mdl-37451052

ABSTRACT

The saturated LPC18:0 and unsaturated LPC18:1 lysophosphatidylcholines have important roles in inflammation and immunity and are interesting targets for immunotherapy. The synthetic cationic lipid DODAB has been successfully employed in delivery systems, and would be a suitable carrier for those lysophosphatidylcholines. Here, assemblies of DODAB and LPC18:0 or LPC18:1 were characterized by Differential Scanning Calorimetry (DSC) and Electron Paramagnetic Resonance (EPR) spectroscopy. LPC18:0 increased the DODAB gel-fluid transition enthalpy and rigidified both phases. In contrast, LPC18:1 caused a decrease in the DODAB gel-fluid transition temperature and cooperativity, associated with two populations with distinct rigidities in the gel phase. In the fluid phase, LPC18:1 increased the surface order but, differently from LPC18:0, did not affect viscosity at the membrane core. The impact of the different acyl chains of LPC18:0 and 18:1 on structure and thermotropic behavior should be considered when developing applications using mixed DODAB membranes.


Subject(s)
Lysophosphatidylcholines , Quaternary Ammonium Compounds , Thermodynamics , Transition Temperature , Quaternary Ammonium Compounds/chemistry , Calorimetry, Differential Scanning , Lipid Bilayers/chemistry
3.
ACS Omega ; 8(6): 5306-5315, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36816677

ABSTRACT

C24:1 sulfatide (SF) is an endogenous activator of type II NKT cells. The thermotropic behavior and structure of SF dispersions and its mixtures (4.8-16.6 mol %) with cationic dioctadecyldimethylammonium bromide (DODAB) bilayers were investigated by differential scanning calorimetry and electron paramagnetic resonance spectroscopy. The non-interdigitated lamellar structures formed by pure SF display broad thermal events around 27.5 °C when heated and cooled. These events disappear upon mixing with DODAB, showing complete lipid miscibility. SF decreases the DODAB gel-phase packing, with a consequent decrease in phase-transition temperatures and cooperativity upon heating. In contrast, SF increases the rigidity of the DODAB fluid phase, resulting in a smaller decrease in transition temperatures upon cooling. The hysteresis between heating and cooling decreased as the SF molar fraction increased. These effects on DODAB are similar to the ones described for other glycolipids, such as αGalCer and ßGlcCer. This might be due to the orientation of the rigid and planar amide bond that connects their sphingoid bases and acyl chains, which result in a V-shaped conformation of the glycolipid molecules. The current results may be important to plan and develop new immunotherapeutic tools based on SF.

4.
Sci Rep ; 11(1): 23712, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34887428

ABSTRACT

The important pharmacological actions of Crotoxin (CTX) on macrophages, the main toxin in the venom of Crotalus durissus terrificus, and its important participation in the control of different pathophysiological processes, have been demonstrated. The biological activities performed by macrophages are related to signaling mediated by receptors expressed on the membrane surface of these cells or opening and closing of ion channels, generation of membrane curvature and pore formation. In the present work, the interaction of the CTX complex with the cell membrane of macrophages is studied, both using biological cells and synthetic lipid membranes to monitor structural alterations induced by the protein. Here we show that CTX can penetrate THP-1 cells and induce pores only in anionic lipid model membranes, suggesting that a possible access pathway for CTX to the cell is via lipids with anionic polar heads. Considering that the selectivity of the lipid composition varies in different tissues and organs of the human body, the thermostructural studies presented here are extremely important to open new investigations on the biological activities of CTX in different biological systems.


Subject(s)
Cell Membrane/chemistry , Cell Membrane/metabolism , Crotoxin/chemistry , Crotoxin/metabolism , Macrophages/metabolism , Thermodynamics , Algorithms , Animals , Crotalus , Fluorescent Antibody Technique , Humans , Kinetics , Models, Theoretical , Molecular Structure , Protein Binding , Spectrum Analysis , Structure-Activity Relationship , THP-1 Cells
5.
Biochem Biophys Rep ; 28: 101171, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34825069

ABSTRACT

ATP-Binding Cassette transporters (ABC transporters) are protein complexes involved in the import and export of different molecules, including ions, sugars, peptides, drugs, and others. Due to the diversity of substrates, they have large relevance in physiological processes such as virulence, pathogenesis, and antimicrobial resistance. In Xanthomonas citri subsp. citri, the phytopathogen responsible for the citrus canker disease, 20% of ABC transporters components are expressed under infection conditions, including the putative putrescine/polyamine ABC transporter, PotFGHI. Polyamines are ubiquitous molecules that mediate cell growth and proliferation and play important role in bacterial infections. In this work, we characterized the X. citri periplasmic-binding protein PotF (XAC2476) using bioinformatics, biophysical and structural methods. PotF is highly conserved in Xanthomonas sp. genus, and we showed it is part of a set of proteins related to the import and assimilation of polyamines in X. citri. The interaction of PotF with putrescine and spermidine was direct and indirectly shown through fluorescence spectroscopy analyses, and experiments of circular dichroism (CD) and small-angle X-ray scattering (SAXS), respectively. The protein showed higher affinity for spermidine than putrescine, but both ligands induced structural changes that coincided with the closing of the domains and increasing of thermal stability.

6.
Curr Res Struct Biol ; 3: 165-178, 2021.
Article in English | MEDLINE | ID: mdl-34382010

ABSTRACT

Mycobacterium tuberculosis (Mtb) has 11 Serine-Threonine Protein Kinases (STPK) that control numerous physiological processes, including cell growth, cell division, metabolic flow, and transcription. PknF is one of the 11 Mtb STPKs that has, among other substrates, two FHA domains (FHA-1 and FHA-2) of the ATP-Binding Cassette (ABC) transporter Rv1747. Phosphorylation in T152 and T210 located in a non-structured linker that connects Rv1747 FHA domains is considerate to be the regulatory mechanism of the transporter. In this work, we resolved the three-dimensional structure of the PknF catalytic domain (cPknF) in complex with the human kinase inhibitor IKK16. cPknF is conserved when compared to other STPKs but shows specific residues in the binding site where the inhibitor is positioned. In addition, using Small Angle X-Ray Scattering analysis we monitored the behavior of the wild type and three FHA-phosphomimetic mutants in solution, and measured the cPknF affinity for these domains. The kinase showed higher affinity for the non-phosphorylated wild type domain and preference for phosphorylation of T152 inducing the rapprochement of the domains and significant structural changes. The results shed some light on the process of regulating the transporter's activity by phosphorylation and arises important questions about evolution and importance of this mechanism for the bacillus.

7.
Sci Rep, v. 11, 23712, dez. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4029

ABSTRACT

The important pharmacological actions of Crotoxin (CTX) on macrophages, the main toxin in the venom of Crotalus durissus terrificus, and its important participation in the control of different pathophysiological processes, have been demonstrated. The biological activities performed by macrophages are related to signaling mediated by receptors expressed on the membrane surface of these cells or opening and closing of ion channels, generation of membrane curvature and pore formation. In the present work, the interaction of the CTX complex with the cell membrane of macrophages is studied, both using biological cells and synthetic lipid membranes to monitor structural alterations induced by the protein. Here we show that CTX can penetrate THP-1 cells and induce pores only in anionic lipid model membranes, suggesting that a possible access pathway for CTX to the cell is via lipids with anionic polar heads. Considering that the selectivity of the lipid composition varies in different tissues and organs of the human body, the thermostructural studies presented here are extremely important to open new investigations on the biological activities of CTX in different biological systems.

8.
J Chem Phys ; 153(24): 244104, 2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33380080

ABSTRACT

Remarkable interest is associated with the interpretation of the Prodan fluorescent spectrum. A sequential hybrid Quantum Mechanics/Molecular Mechanics method was used to establish that the fluorescent emission occurs from two different excited states, resulting in a broad asymmetric emission spectrum. The absorption spectra in several solvents were measured and calculated using different theoretical models presenting excellent agreement. All theoretical models [semiempirical, time dependent density functional theory and and second-order multiconfigurational perturbation theory] agree that the first observed band at the absorption spectrum in solution is composed of three electronic excitations very close in energy. Then, the electronic excitation around 340 nm-360 nm may populate the first three excited states (π-π*Lb, n-π*, and π-π*La). The ground state S0 and the first three excited states were analyzed using multi-configurational calculations. The corresponding equilibrium geometries are all planar in vacuum. Considering the solvent effects in the electronic structure of the solute and in the solvent relaxation around the solute, it was identified that these three excited states can change the relative order depending on the solvent polarity, and following the minimum path energy, internal conversions may occur. A consistent explanation of the experimental data is obtained with the conclusive interpretation that the two bands observed in the fluorescent spectrum of Prodan, in several solvents, are due to the emission from two independent states. Our results indicate that these are the n-π* S2 state with a small dipole moment at a lower emission energy and the π-π*Lb S1 state with large dipole moment at a higher emission energy.

9.
Biochem Biophys Rep ; 24: 100827, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33195825

ABSTRACT

Antimicrobial peptides (AMPs) have been appointed as a possible alternative to traditional antibiotics in face of pathogens increasing resistance to conventional drugs. Hylin a1 (IFGAILPLALGALKNLIK), an AMP extracted from the skin secretion of a South American frog, Hypsiboas albopunctatus, was found to show a strong cytotoxicity against bacteria and fungus, but also a considerable hemolytic action. Considering the toxicity of the peptide in eukaryotic cells, this work focuses on investigating the effects of the interaction of the Hylin a1 analogues W6Hya1, D0W6Hya1 and K0W6Hya1 with models of eukaryotic structures, namely zwitterionic liposomes of dipalmitoyl phosphatidylcholine (DPPC) and calf-thymus DNA (CT DNA). Through intrinsic Trp fluorescence we determined that the peptide affinity for fluid DPPC bilayers follows the decreasing order: D0W6Hya1 (+2) > W6Hya1 (+3) ¼ K0W6Hya1 (+4). Fluorescence data also indicate that the Trp residue in the more positively charged peptide, K0W6Hya1, is less deep in the bilayer than the residue in the other two peptides. This finding is supported by differential scanning calorimetry (DSC) data, which shows that both D0W6Hya1 and W6Hya1 disturb DPPC gel-fluid transition slightly more effectively than K0W6Hya1. DPPC DSC profiles are homogeneously disturbed by the three peptides, probably related to peptide-membrane diffusion. Surprisingly, the peptide that displays the lowest affinity for PC membranes and is located at the more superficial position in the bilayer, K0W6Hya1, is the most efficient in causing formation of pores on the membrane, as attested by carboxyfluorescein leakage assays. The three peptides were found to interact with CT DNA, with a deep penetration of the Trp residue into hydrophobic pockets of the double helix, as indicated by the significant blue shift on the Trp fluorescence, and the displacement of DNA-bound ethidium bromide by the peptides. The experiments of DNA electrophoresis confirm that Hylin peptides bind DNA in a concentration-dependent manner, inducing complete DNA retardation at the relative AMP/plasmid DNA weight ratio of ~17. These findings could help to better understand the AMPs toxic effects on eukaryotic cells, thus contributing to the design of healthier therapeutic agents.

10.
Chem Phys Lipids ; 232: 104963, 2020 10.
Article in English | MEDLINE | ID: mdl-32882224

ABSTRACT

α-galactosylceramide (α-GalCer; KRN7000) strongly stimulates NKT cells. The structures of α-GalCer assemblies and of cationic DODAB bilayers containing α-GalCer were investigated by differential scanning calorimetry (DSC) and electron spin resonance (ESR) spectroscopy. Assemblies of α-GalCer have a very tightly packed gel phase, causing spin labels to cluster and display spin exchange interactions. An endothermic phase transition is observed by DSC, leading to a fluid phase. This phase transition peak disappears upon mixing with DODAB, showing that up to 9 mol% α-GalCer is miscible with the cationic lipid. ESR spectra show that α-GalCer decreases DODAB gel phase packing, resulting in a decrease of gel-fluid transition temperature and cooperativity in DSC thermograms of mixed bilayers. In contrast, α-GalCer increases the rigidity of the fluid phase. These effects are probably due to the conformation of the rigid amide bond that connects the phytosphingosine base of α-GalCer to its long and saturated acyl chain. Possibly, α-GalCer adopts a V-shaped conformation because of the perpendicular orientation of the amide bond towards the axes of the hydrocarbon chains. Apparently, the effect of the amide bond configuration is a key structural feature for the interaction between ceramide-based glycolipids and DODAB molecules, since we have previously reported a similar decrease of gel phase packing and increase in fluid phase rigidity for DODAB bilayers containing C24:1ß-glucosylceramide. Since the structure of delivery systems is critical to the biological activity of α-GalCer, this work certainly contributes to the planning and development of novel immunotherapeutic tools.


Subject(s)
Galactosylceramides/chemistry , Lipid Bilayers/chemistry , Quaternary Ammonium Compounds/chemistry , Glycosylation , Models, Molecular , Molecular Conformation , Transition Temperature
11.
Biochim Biophys Acta Biomembr ; 1861(3): 643-650, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30611744

ABSTRACT

The effect of 5 mol%, 9 mol%, and 16 mol% of C24:1 ß-glucosylceramide (ßGlcCer) on the structure of cationic DODAB bilayers was investigated by means of differential scanning calorimetry (DSC), electron spin resonance (ESR) spectroscopy and fluorescence microscopy. ßGlcCer is completely miscible with DODAB at all fractions tested, since no domains were observed in fluorescence microscopy or ESR spectra. The latter showed that ßGlcCer destabilized the gel phase of DODAB bilayers by decreasing the gel phase packing. As a consequence, ßGlcCer induced a decrease in the phase transition temperature and cooperativity of DODAB bilayers, as seen in DSC thermograms. ESR spectra also showed that ßGlcCer induced an increase in DODAB fluid phase order and/or rigidity. Despite their different structures, a similar effect of loosening the gel phase packing and turning the fluid phase more rigid/organized has also been observed when low molar fractions of cholesterol were incorporated in DODAB bilayers. The structural characterization of mixed membranes made of cationic lipids and glucosylceramides may be important for developing novel immunotherapeutic tools such as vaccine adjuvants.


Subject(s)
Glucosylceramides/chemistry , Lipid Bilayers/chemistry , Quaternary Ammonium Compounds/chemistry , Calorimetry, Differential Scanning , Cations/chemistry , Electron Spin Resonance Spectroscopy , Liposomes/chemistry , Microscopy, Fluorescence , Phase Transition , Temperature , Thermodynamics , Transition Temperature
12.
Langmuir ; 34(5): 2014-2025, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29284086

ABSTRACT

Considering the known different mode of action of antimicrobial peptides in zwitterionic and anionic cell membranes, the present work compares the action of the antimicrobial peptide K0-W6-Hya1 (KIFGAIWPLALGALKNLIK-NH2) with zwitterionic and negatively charged model membranes, namely, liposomes composed of phosphatidylcholine (PC) and phosphatidylglycerol (PG) membranes, and a mixture of the two. Differential scanning calorimetry (DSC), steady state fluorescence of the Trp residue, dynamic light scattering (DLS), and measurement of the leakage of an entrapped fluorescent dye (carboxyfluorescein, CF) were performed with large unilamellar vesicles (LUVs). All techniques evidenced the different action of the peptide in zwitterionic and anionic vesicles. Trp fluorescence spectroscopy shows that the differences are related not only to the partition of the cationic peptide in zwitterionic and anionic membranes, but also to the different penetration depth of the peptide into the lipid bilayers: Trp goes deeper into negatively charged membranes, both in the gel and fluid phases, than into zwitterionic ones. DSC shows that the peptide is strongly attached to anionic bilayers, giving rise to the coexistence of two different lipid regions, one depleted of peptide and another one peptide-disturbed, possibly a stable or transient polar pore, considering the leakage of CF. This contrasts with the homogeneous effect produced by the peptide in zwitterionic membranes, probably related to peptide-membrane diffusion. Moreover, in mixed bilayers (PC:PG), the peptide sequesters negatively charged lipids, creating peptide-rich anionic lipid regions, strongly disturbing the membrane. The distinct structural interaction displayed by the peptide in PC and PG membranes could be related to the different mechanisms of action of the peptide in anionic prokaryotic and zwitterionic eukaryotic cell membranes.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Cell Membrane/chemistry , Cell Membrane/drug effects , Membrane Lipids/chemistry , Peptides/chemistry , Peptides/pharmacology , Amino Acid Sequence
13.
Biophys Rev ; 9(5): 729-745, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28940105

ABSTRACT

Emodin is one of the most abundant anthraquinone derivatives found in nature. It is the active principle of some traditional herbal medicines with known biological activities. In this work, we combined experimental and theoretical studies to reveal information about location, orientation, interaction and perturbing effects of Emodin on lipid bilayers, where we have taken into account the neutral form of the Emodin (EMH) and its anionic/deprotonated form (EM-). Using both UV/Visible spectrophotometric techniques and molecular dynamics (MD) simulations, we showed that both EMH and EM- are located in a lipid membrane. Additionally, using MD simulations, we revealed that both forms of Emodin are very close to glycerol groups of the lipid molecules, with the EMH inserted more deeply into the bilayer and more disoriented relative to the normal of the membrane when compared with the EM-, which is more exposed to interfacial water. Analysis of several structural properties of acyl chains of the lipids in a hydrated pure DMPC bilayer and in the presence of Emodin revealed that both EMH and EM- affect the lipid bilayer, resulting in a remarkable disorder of the bilayer in the vicinity of the Emodin. However, the disorder caused by EMH is weaker than that caused by EM-. Our results suggest that these disorders caused by Emodin might lead to distinct effects on lipid bilayers including its disruption which are reported in the literature.

14.
Biophys Rev ; 9(5): 633-647, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28836112

ABSTRACT

Cationic bilayers have been used as models to study membrane fusion, templates for polymerization and deposition of materials, carriers of nucleic acids and hydrophobic drugs, microbicidal agents and vaccine adjuvants. The versatility of these membranes depends on their structure. Electron spin resonance (ESR) spectroscopy is a powerful technique that employs hydrophobic spin labels to probe membrane structure and packing. The focus of this review is the extensive structural characterization of cationic membranes prepared with dioctadecyldimethylammonium bromide or diC14-amidine to illustrate how ESR spectroscopy can provide important structural information on bilayer thermotropic behavior, gel and fluid phases, phase coexistence, presence of bilayer interdigitation, membrane fusion and interactions with other biologically relevant molecules.

15.
J Biotechnol ; 228: 58-66, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27130499

ABSTRACT

Bacillus subtilis spores represent a suitable platform for the adsorption of proteins, enzymes and viral particles at physiological conditions. In the present work, we demonstrate that purified spores can also adsorb DNA on their surface after treatment with cationic molecules. In addition, we demonstrate that DNA-coated B. subtilis spores can be used as particulate carriers and act as an alternative to gold microparticles for the biolistic (gene gun) administration of plasmid DNA in mice. Gene gun delivery of spores pre-treated with DODAB (dioctadecyldimethylammonium bromide) allowed efficient plasmid DNA absorption and induced protein expression levels similar to those obtained with gold microparticles. More importantly, we demonstrated that a DNA vaccine adsorbed on spores can be loaded into biolistic cartridges and efficiently delivered into mice, which induced specific cellular and antibody responses. Altogether, these data indicate that B. subtilis spores represent a simple and low cost alternative for the in vivo delivery of DNA vaccines by the gene gun technology.


Subject(s)
Biolistics/methods , Drug Carriers/chemistry , Spores, Bacterial/chemistry , Vaccines, DNA/chemistry , Adsorption , Animals , Bacillus subtilis/chemistry , Drug Carriers/administration & dosage , Gold/chemistry , Male , Mice , Mice, Inbred C57BL , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/immunology , Quaternary Ammonium Compounds/chemistry , Spores, Bacterial/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology
16.
Phys Chem Chem Phys ; 17(11): 7498-506, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25706300

ABSTRACT

The effect of a small single-stranded oligonucleotide (ODN) on the structure of cationic DODAB vesicles was investigated by means of differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS) and electron spin resonance (ESR) spectroscopy. ODN adsorption induced coalescence of vesicles and formation of multilamellar structures with close contact between lamellae. It also increased the phase transition temperature by 10 °C but decreased transition cooperativity. The ODN rigidified and stabilized the gel phase. In the fluid phase, a simultaneous decrease of ordering close to the bilayer surface and increase in bilayer core rigidity was observed in the presence of the ODN. These effects may be due not only to electrostatic shielding of DODAB head groups but also to superficial dehydration of the bilayers. The data suggest that oligonucleotides may induce the formation of a multilamellar poorly hydrated coagel-like phase below phase transition. These effects should be taken into account when planning ODN delivery employing cationic bilayer carriers.


Subject(s)
Oligonucleotides/chemistry , Quaternary Ammonium Compounds/chemistry , Membranes, Artificial , Thermodynamics , Transition Temperature
17.
Biophys Rev ; 6(1): 63-74, 2014 Mar.
Article in English | MEDLINE | ID: mdl-28509963

ABSTRACT

Several experimental and theoretical approaches can be used for a comprehensive understanding of solvent effects on the electronic structure of solutes. In this review, we revisit the influence of solvents on the electronic structure of the fluorescent probes Prodan and Laurdan, focusing on their electric dipole moments. These biologically used probes were synthesized to be sensitive to the environment polarity. However, their solvent-dependent electronic structures are still a matter of discussion in the literature. The absorption and emission spectra of Prodan and Laurdan in different solvents indicate that the two probes have very similar electronic structures in both the ground and excited states. Theoretical calculations confirm that their electronic ground states are very much alike. In this review, we discuss the electric dipole moments of the ground and excited states calculated using the widely applied Lippert-Mataga equation, using both spherical and spheroid prolate cavities for the solute. The dimensions of the cavity were found to be crucial for the calculated dipole moments. These values are compared to those obtained by quantum mechanics calculations, considering Prodan in vacuum, in a polarizable continuum solvent, and using a hybrid quantum mechanics-molecular mechanics methodology. Based on the theoretical approaches it is evident that the Prodan dipole moment can change even in the absence of solute-solvent-specific interactions, which is not taken into consideration with the experimental Lippert-Mataga method. Moreover, in water, for electric dipole moment calculations, it is fundamental to consider hydrogen-bonded molecules.

18.
Langmuir ; 29(35): 11102-8, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23926901

ABSTRACT

In this work, we investigate the effect of a small single-stranded oligonucleotide (ODN) on the colloid stability and structure of cationic diC14-amidine liposomes. Dynamic light scattering (DLS) shows that small, stable, anionic assemblies are formed in presence of excess ODN negative charge. This charge overcompensation condition was further characterized. A less cooperative bilayer phase transition is observed by differential scanning calorimetry (DSC). Electron spin resonance (ESR) spectra of probes at different bilayer depths show that ODN electrostatic adsorption increases the rigidity of both interdigitated gel and lamellar fluid phases. The increase in gel phase rigidity could be explained by the transformation of an adjacent to an interpenetrated interdigitation. Interdigitated fusogenic bilayers may find interesting applications in delivery of therapeutic oligonucleotides.


Subject(s)
Amidines/chemistry , DNA, Single-Stranded/chemistry , Liposomes/chemistry , Oligonucleotides/chemistry , Adsorption , Electron Spin Resonance Spectroscopy , Light , Phase Transition , Scattering, Radiation , Static Electricity
19.
J Fluoresc ; 23(3): 479-86, 2013 May.
Article in English | MEDLINE | ID: mdl-23397490

ABSTRACT

Lipid bilayers have been largely used as model systems for biological membranes. Hence, their structures, and alterations caused on them by biological active molecules, have been the subject of many studies. Accordingly, fluorescent probes incorporated into lipid bilayers have been extensively used for characterizing lipid bilayer fluidity and/or polarity. However, for the proper analysis of the alterations undergone by a membrane, a comprehensive knowledge of the fluorescent properties of the probe is fundamental. Therefore, the present work compares fluorescent properties of a relative new fluorescent membrane probe, 2-amino-N-hexadecyl-benzamide (Ahba), with the largely used probe 6-dodecanoyl-N,N-dimethyl-2-naphthylamine (Laurdan), using both static and time resolved fluorescence. Both Ahba and Laurdan have the fluorescent moiety close to the bilayer surface; Ahba has a rather small fluorescent moiety, which was shown to be very sensitive to the bilayer surface pH. The main goal was to point out the fluorescent properties of each probe that are most sensitive to structural alterations on a lipid bilayer. The two probes were incorporated into bilayers of the well-studied zwitterionic lipid dimyristoyl phosphatidylcholine (DMPC), which exhibits a gel-fluid transition around 23 °C. The system was monitored between 5 and 50 °C, hence allowing the study of the two different lipid structures, the gel and fluid bilayer phases, and the transition between them. As it is known, the fluorescent emission spectrum of Laurdan is highly sensitive to the bilayer gel-fluid transition, whereas the Ahba fluorescence spectrum was found to be insensitive to changes in bilayer structure and polarity, which are known to happen at the gel-fluid transition. However, both probes monitor the bilayer gel-fluid transition through fluorescence anisotropy measurements. With time-resolved fluorescence, it was possible to show that bilayer structural variations can be monitored by Laurdan excited state lifetimes changes, whereas Ahba lifetimes were found to be insensitive to bilayer structural modifications. Through anisotropy time decay measurements, both probes could monitor structural bilayer changes, but the limiting anisotropy was found to be a better parameter than the rotational correlation time. It is interesting to have in mind that the relatively small fluorophore of Ahba (o-Abz) could possibly be bound to a phospholipid hydrocarbon chain, not disturbing much the bilayer packing and being a sensitive probe for the bilayer core.


Subject(s)
2-Naphthylamine/analogs & derivatives , Benzamides/chemistry , Cell Membrane/chemistry , Fluorescent Dyes/chemistry , Laurates/chemistry , 2-Naphthylamine/chemistry , Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Phase Transition , Spectrometry, Fluorescence , Temperature , Time Factors
20.
Chem Phys Lipids ; 165(8): 826-37, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23165171

ABSTRACT

Highly charged vesicles of the saturated anionic lipid dimyristoyl phosphatidylglycerol (DMPG) in low ionic strength medium exhibit a very peculiar thermo-structural behavior. Along a wide gel-fluid transition region, DMPG dispersions display several anomalous characteristics, like low turbidity, high electrical conductivity and viscosity. Here, static and dynamic light scattering (SLS and DLS) were used to characterize DMPG vesicles at different temperatures. Similar experiments were performed with the largely studied zwitterionic lipid dimyristoyl phosphatidylcholine (DMPC). SLS and DLS data yielded similar dimensions for DMPC vesicles at all studied temperatures. However, for DMPG, along the gel-fluid transition region, SLS indicated a threefold increase in the vesicle radius of gyration, whereas the hydrodynamic radius, as obtained from DLS, increased 30% only. Despite the anomalous increase in the radius of gyration, DMPG lipid vesicles maintain isotropy, since no light depolarization was detected. Hence, SLS data are interpreted regarding the presence of isotropic vesicles within the DMPG anomalous transition, but highly perforated vesicles, with large holes. DLS/SLS discrepancy along the DMPG transition region is discussed in terms of the interpretation of the Einstein-Stokes relation for porous vesicles. Therefore, SLS data are shown to be much more appropriate for measuring porous vesicle dimensions than the vesicle diffusion coefficient. The underlying nanoscopic process which leads to the opening of pores in charged DMPG bilayer is very intriguing and deserves further investigation. One could envisage biotechnological applications, with vesicles being produced to enlarge and perforate in a chosen temperature and/or pH value.


Subject(s)
Lipid Bilayers/chemistry , Phosphatidylglycerols/chemistry , Calorimetry, Differential Scanning , Dimyristoylphosphatidylcholine/chemistry , Light , Phase Transition , Scattering, Radiation , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL