Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 20(23): 235301, 2009 Jun 10.
Article in English | MEDLINE | ID: mdl-19448292

ABSTRACT

In modern experimental physics the pinhole camera is used when the creation of a focusing element (lens) is difficult. We have experimentally realized a method of image construction in atom optics, based on the idea of an optical pinhole camera. With the use of an atom pinhole camera we have built an array of identical arbitrary-shaped atomic nanostructures with the minimum size of an individual nanostructure element down to 30 nm on an Si surface. The possibility of 30 nm lithography by means of atoms, molecules and clusters has been shown.

2.
Ultramicroscopy ; 107(10-11): 882-6, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17560032

ABSTRACT

We have recently developed a new method for directly measuring the spring constant of single molecules and molecular complexes on a real-time basis [L.A. Chtcheglova, G.T. Shubeita, S.K. Sekatskii, G. Dietler, Biophys. J. 86 (2004) 1177]. The technique combines standard force spectroscopy with a small dithering of tip. Changes in the amplitude of the oscillations are measured as a function of the pulling-off force to yield the spring constant of the complex. In this report, we present the first results of combination of this approach with the force-clamp spectroscopy. The standard atomic-force microscope has been supplemented with an electronic unit, which is capable of realizing an arbitrary force function, and permits the force-loading regime to be interrupted at any time. Using this method, the time needed to rupture a single bond can be measured as a function of the force that is required to maintain the complex in a stretched condition. The energy landscape of the avidin-biotin complex is explored and discussed.


Subject(s)
Avidin/chemistry , Biotin/chemistry , Microscopy, Atomic Force/methods , Spectrum Analysis
3.
Ultramicroscopy ; 99(4): 227-33, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15149717

ABSTRACT

The experimental results of the direct measurement of the absolute value of interaction force between the fiber probe of a scanning near-field optical microscope (SNOM) operated in shear force mode and a sample, which were performed using combined SNOM-atomic force microscope setup, are discussed for the out-of-resonance fiber probe excitation mode. We demonstrate that the value of the tapping component of the total force for this mode at typical dither amplitudes is of the order of 10 nN and thus is quite comparable with the value of this force for in resonance fiber probe excitation mode. It is also shown that for all modes this force component is essentially smaller than the usually neglected static attraction force, which is of the order of 200 nN. The true contact nature of the tip-sample interaction during the out of resonance mode is proven. From this, we conclude that such a detection mode is very promising for operation in liquids, where other modes encounter great difficulties.

4.
Ultramicroscopy ; 89(1-3): 83-7, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11770756

ABSTRACT

It is shown that field emission microscopy and related methods can be used to analyze the metal coated fiber tips, which nowadays are the most frequently used sensor for the scanning near-field optical microscopy (SNOM). Metal free and thus non field-emitting aperture for the light transmission on the tip apex can be directly seen and its parameters can be measured, which is very important for the interpretation of SNOM data.

SELECTION OF CITATIONS
SEARCH DETAIL