Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Environ Sci ; 12: 1-19, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38516348

ABSTRACT

Continued large-scale public investment in declining ecosystems depends on demonstrations of "success". While the public conception of "success" often focuses on restoration to a pre-disturbance condition, the scientific community is more likely to measure success in terms of improved ecosystem health. Using a combination of literature review, workshops and expert solicitation we propose a generalized framework to improve ecosystem health in highly altered river basins by reducing ecosystem stressors, enhancing ecosystem processes and increasing ecosystem resilience. We illustrate the use of this framework in the Mississippi-Atchafalaya River Basin (MARB) of the central United States (U.S.), by (i) identifying key stressors related to human activities, and (ii) creating a conceptual ecosystem model relating those stressors to effects on ecosystem structure and processes. As a result of our analysis, we identify a set of landscape-level indicators of ecosystem health, emphasizing leading indicators of stressor removal (e.g., reduced anthropogenic nutrient inputs), increased ecosystem function (e.g., increased water storage in the landscape) and increased resilience (e.g., changes in the percentage of perennial vegetative cover). We suggest that by including these indicators, along with lagging indicators such as direct measurements of water quality, stakeholders will be better able to assess the effectiveness of management actions. For example, if both leading and lagging indicators show improvement over time, then management actions are on track to attain desired ecosystem condition. If, however, leading indicators are not improving or even declining, then fundamental challenges to ecosystem health remain to be addressed and failure to address these will ultimately lead to declines in lagging indicators such as water quality. Although our model and indicators are specific to the MARB, we believe that the generalized framework and the process of model and indicator development will be valuable in an array of altered river basins.

3.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35165202

ABSTRACT

The Renewable Fuel Standard (RFS) specifies the use of biofuels in the United States and thereby guides nearly half of all global biofuel production, yet outcomes of this keystone climate and environmental regulation remain unclear. Here we combine econometric analyses, land use observations, and biophysical models to estimate the realized effects of the RFS in aggregate and down to the scale of individual agricultural fields across the United States. We find that the RFS increased corn prices by 30% and the prices of other crops by 20%, which, in turn, expanded US corn cultivation by 2.8 Mha (8.7%) and total cropland by 2.1 Mha (2.4%) in the years following policy enactment (2008 to 2016). These changes increased annual nationwide fertilizer use by 3 to 8%, increased water quality degradants by 3 to 5%, and caused enough domestic land use change emissions such that the carbon intensity of corn ethanol produced under the RFS is no less than gasoline and likely at least 24% higher. These tradeoffs must be weighed alongside the benefits of biofuels as decision-makers consider the future of renewable energy policies and the potential for fuels like corn ethanol to meet climate mitigation goals.

4.
J Adv Model Earth Syst ; 13(6)2021 May 28.
Article in English | MEDLINE | ID: mdl-34336130

ABSTRACT

The Missouri River Basin (MORB) has experienced a resurgence of grassland conversion to crop production, which raised concerns on water quality. We applied the Soil and Water Assessment Tool (SWAT) to address how this conversion would impact water quality. We designed three crop production scenarios representing conversion of grassland to: (a) continuous corn; (b) corn/soybean rotation; and (c) corn/wheat rotation to assess the impact. The SWAT model results showed: (a) the lower MORB produced high total nitrogen (TN) and total phosphorus (TP) load before conversion (baseline) due mainly to high precipitation and high agricultural activity; (b) the greatest percentage increases of TN and TP occurred in the North and South Dakotas, coinciding with the highest amount of grassland conversion to cropland; and (c) grassland conversion to continuous corn resulted in the greatest increase in TN and TP loads, followed by conversion to corn/soybean and then conversion to corn/wheat. Although the greatest percentage increases of TN and TP occurred in the North and South Dakotas, these areas still contributed relatively low TN and TP to total basin loads after conversion. However, watersheds, predominantly in the lower MORB continued to be "hotspots" that contributed the greatest amounts of TN and TP to the total basin loads-driven by a combination of grassland conversion, high precipitation, and loading from pre-existing cropland. At the watershed outlet, the TN and TP loads were increased by 6.4% (13,800 t/yr) and 8.7% (3,400 t/yr), respectively, during the 2008-2016 period for the conversion to continuous corn scenario.

5.
Sci Adv ; 7(23)2021 06.
Article in English | MEDLINE | ID: mdl-34088658

ABSTRACT

Alongside the steep reductions needed in fossil fuel emissions, natural climate solutions (NCS) represent readily deployable options that can contribute to Canada's goals for emission reductions. We estimate the mitigation potential of 24 NCS related to the protection, management, and restoration of natural systems that can also deliver numerous co-benefits, such as enhanced soil productivity, clean air and water, and biodiversity conservation. NCS can provide up to 78.2 (41.0 to 115.1) Tg CO2e/year (95% CI) of mitigation annually in 2030 and 394.4 (173.2 to 612.4) Tg CO2e cumulatively between 2021 and 2030, with 34% available at ≤CAD 50/Mg CO2e. Avoided conversion of grassland, avoided peatland disturbance, cover crops, and improved forest management offer the largest mitigation opportunities. The mitigation identified here represents an important potential contribution to the Paris Agreement, such that NCS combined with existing mitigation plans could help Canada to meet or exceed its climate goals.

6.
Environ Res Lett ; 16: 1-13, 2021 May 07.
Article in English | MEDLINE | ID: mdl-36560928

ABSTRACT

After decades of declining cropland area, the United States (US) experienced a reversal in land use/land cover change in recent years, with substantial grassland conversion to cropland in the US Midwest. Although previous studies estimated soil carbon (C) loss due to cropland expansion, other important environmental indicators, such as soil erosion and nutrient loss, remain largely unquantified. Here, we simulated environmental impacts from the conversion of grassland to corn and soybeans for 12 US Midwestern states using the EPIC (Environmental Policy Integrated Climate) model. Between 2008 and 2016, over 2 Mha of grassland were converted to crop production in these states, with much less cropland concomitantly abandoned or retired from production. The net change in grassland-cropland conversion increased annual soil erosion by 7.9%, nitrogen (N) loss by 3.7%, and soil organic carbon loss by 5.6% relative to that of existing cropland, despite an associated increase in cropland area of only 2.5%. Notably, the above estimates represent the scenario of converting unmanaged grassland to tilled corn and soybeans, and impacts varied depending upon crop type and tillage regime. Corn and soybeans are dominant biofuel feedstocks, yet the grassland conversion and subsequent environmental impacts simulated in this study are likely not attributable solely to biofuel-driven land use change since other factors also contribute to corn and soybean prices and land use decisions. Nevertheless, our results suggest grassland conversion in the Upper Midwest has resulted in substantial degradation of soil quality, with implications for air and water quality as well. Additional conservation measures are likely necessary to counterbalance the impacts, particularly in areas with high rates of grassland conversion (e.g., the Dakotas, southern Iowa).

7.
Nat Commun ; 11(1): 4295, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908130

ABSTRACT

Recent expansion of croplands in the United States has caused widespread conversion of grasslands and other ecosystems with largely unknown consequences for agricultural production and the environment. Here we assess annual land use change 2008-16 and its impacts on crop yields and wildlife habitat. We find that croplands have expanded at a rate of over one million acres per year, and that 69.5% of new cropland areas produced yields below the national average, with a mean yield deficit of 6.5%. Observed conversion infringed upon high-quality habitat that, relative to unconverted land, had provided over three times higher milkweed stem densities in the Monarch butterfly Midwest summer breeding range and 37% more nesting opportunities per acre for waterfowl in the Prairie Pothole Region of the Northern Great Plains. Our findings demonstrate a pervasive pattern of encroachment into areas that are increasingly marginal for production, but highly significant for wildlife, and suggest that such tradeoffs may be further amplified by future cropland expansion.


Subject(s)
Animals, Wild , Conservation of Natural Resources , Costs and Cost Analysis/statistics & numerical data , Crop Production/trends , Crops, Agricultural/economics , Animals , Biodiversity , Butterflies , Crop Production/economics , Crop Production/statistics & numerical data , Plant Dispersal , Spatio-Temporal Analysis , United States
8.
Sci Data ; 7(1): 112, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32249772

ABSTRACT

Remotely sensed biomass carbon density maps are widely used for myriad scientific and policy applications, but all remain limited in scope. They often only represent a single vegetation type and rarely account for carbon stocks in belowground biomass. To date, no global product integrates these disparate estimates into an all-encompassing map at a scale appropriate for many modelling or decision-making applications. We developed an approach for harmonizing vegetation-specific maps of both above and belowground biomass into a single, comprehensive representation of each. We overlaid input maps and allocated their estimates in proportion to the relative spatial extent of each vegetation type using ancillary maps of percent tree cover and landcover, and a rule-based decision schema. The resulting maps consistently and seamlessly report biomass carbon density estimates across a wide range of vegetation types in 2010 with quantified uncertainty. They do so for the globe at an unprecedented 300-meter spatial resolution and can be used to more holistically account for diverse vegetation carbon stocks in global analyses and greenhouse gas inventories.


Subject(s)
Biomass , Carbon , Plants , Remote Sensing Technology
9.
Sci Adv ; 4(11): eaat1869, 2018 11.
Article in English | MEDLINE | ID: mdl-30443593

ABSTRACT

Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)-21 conservation, restoration, and improved land management interventions on natural and agricultural lands-to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year-1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year-1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.

SELECTION OF CITATIONS
SEARCH DETAIL
...