Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Mitochondrion ; : 101905, 2024 May 24.
Article En | MEDLINE | ID: mdl-38797357

Pathogenic ACAD9 variants cause complex I deficiency. Patients presenting in infancy unresponsive to riboflavin have high mortality. A six-month-old infant presented with riboflavin unresponsive lactic acidosis and life-threatening cardiomyopathy. Treatment with high dose bezafibrate and nicotinamide riboside resulted in marked clinical improvement including reduced lactate and NT-pro-brain type natriuretic peptide levels, with stabilized echocardiographic measures. After a long stable period, the child succumbed from cardiac failure with infection at 10.5 months. Therapy was well tolerated. Peak bezafibrate levels exceeded its EC50. The clinical improvement with this treatment illustrates its potential, but weak PPAR agonist activity of bezafibrate limited its efficacy.

2.
J Inherit Metab Dis ; 45(2): 157-168, 2022 03.
Article En | MEDLINE | ID: mdl-34625984

Methionine synthase deficiency (cblG complementation group) is a rare inborn error of metabolism affecting the homocysteine re-methylation pathway. It leads to a biochemical phenotype of hyperhomocysteinemia and hypomethioninemia. The clinical presentation of cblG is variable, ranging from seizures, encephalopathy, macrocytic anemia, hypotonia, and feeding difficulties in the neonatal period to onset of psychiatric symptoms or acute neurologic changes in adolescence or adulthood. Given the variable and nonspecific symptoms seen in cblG, the diagnosis of affected patients is often delayed. Medical management of cblG includes the use of hydroxocobalamin, betaine, folinic acid, and in some cases methionine supplementation. Treatment has been shown to lead to improvement in the biochemical profile of affected patients, with lowering of total homocysteine levels and increasing methionine levels. However, the published literature contains differing conclusions on whether treatment is effective in changing the natural history of the disease. Herein, we present five patients with cblG who have shown substantial clinical benefit from treatment with objective improvement in their neurologic outcomes. We demonstrate more favorable outcomes in our patients who were treated early in life, especially those who were treated before neurologic symptoms manifested. Given improved outcomes from treatment of presymptomatic patients, cblG warrants inclusion in newborn screening.


Methionine , Vitamin B 12 , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/deficiency , Adult , Amino Acid Metabolism, Inborn Errors , Early Diagnosis , Homocysteine , Humans , Metabolism, Inborn Errors , Vitamin B 12/metabolism
3.
J Investig Med High Impact Case Rep ; 9: 23247096211014685, 2021.
Article En | MEDLINE | ID: mdl-33966472

Lipoid congenital adrenal hyperplasia (LCAH) is typically inherited as an autosomal recessive condition. There are 3 reports of individuals with a dominantly acting heterozygous variant leading to a clinically significant phenotype. We report a 46,XY child with a novel heterozygous intronic variant in STAR resulting in LCAH with an attenuated genital phenotype. The patient presented with neonatal hypoglycemia and had descended testes with a fused scrotum and small phallus. Evaluation revealed primary adrenal insufficiency with deficiencies of cortisol, aldosterone, and androgens. He was found to have a de novo heterozygous novel variant in STAR: c.65-2A>C. We report a case of a novel variant and review of other dominant mutations at the same position in the literature. Clinicians should be aware of the possibility of attenuated genital phenotypes of LCAH and the contribution of de novo variants in STAR at c.65-2 to the pathogenesis of that phenotype.


Adrenal Hyperplasia, Congenital , Adrenal Insufficiency , Disorder of Sex Development, 46,XY , Adrenal Hyperplasia, Congenital/genetics , Humans , Male , Phosphoproteins
4.
Mol Genet Metab ; 133(3): 231-241, 2021 07.
Article En | MEDLINE | ID: mdl-33985889

One of the most vital elements of management for patients with inborn errors of intermediary metabolism is the promotion of anabolism, the state in which the body builds new components, and avoidance of catabolism, the state in which the body breaks down its own stores for energy. Anabolism is maintained through the provision of a sufficient supply of substrates for energy, as well as critical building blocks of essential amino acids, essential fatty acids, and vitamins for synthetic function and growth. Patients with metabolic diseases are at risk for decompensation during prolonged fasting, which often occurs during illnesses in which enteral intake is compromised. During these times, intravenous nutrition must be supplied to fully meet the specific nutritional needs of the patient. We detail our approach to intravenous management for metabolic patients and its underlying rationale. This generally entails a combination of intravenous glucose and lipid as well as early introduction of protein and essential vitamins. We exemplify the utility of our approach in case studies, as well as scenarios and specific disorders which require a more careful administration of nutritional substrates or a modification of macronutrient ratios.


Metabolism, Inborn Errors/complications , Metabolism, Inborn Errors/therapy , Metabolism , Administration, Intravenous , Child , Diet, Ketogenic , Glucose/administration & dosage , Humans , Lipids/administration & dosage , Nutritional Status , Vitamins/administration & dosage
5.
Mol Genet Metab ; 131(4): 398-404, 2020 12.
Article En | MEDLINE | ID: mdl-33279411

Genetic defects in mitochondrial DNA encoded tRNA genes impair mitochondrial translation with resultant defects in the mitochondrial respiratory chain and oxidative phosphorylation system. The phenotypic spectrum of disease seen in mitochondrial tRNA defects is variable and proving pathogenicity of new variants is challenging. Only three pathogenic variants have been described previously in the mitochondrial tRNATyr gene MT-TY, with the reported phenotypes consisting largely of adult onset myopathy and ptosis. We report a patient with a novel MT-TY acceptor stem variant m.5889A>G at high heteroplasmy in muscle, low in blood, and absent in the mother's blood. The phenotype consisted of a childhood-onset severe multi-system disorder characterized by a neurodegenerative course including ataxia and seizures, failure-to-thrive, combined myopathy and neuropathy, and hearing and vision loss. Brain imaging showed progressive atrophy and basal ganglia calcifications. Mitochondrial biomarkers lactate and GDF15 were increased. Functional studies showed a deficient activity of the respiratory chain enzyme complexes containing mtDNA-encoded subunits I, III and IV. There were decreased steady state levels of these mitochondrial complex proteins, and presence of incompletely assembled complex V forms in muscle. These changes are typical of a mitochondrial translational defect. These data support the pathogenicity of this novel variant. Careful review of variants in MT-TY additionally identified two other pathogenic variants, one likely pathogenic variant, nine variants of unknown significance, five likely benign and four benign variants.


DNA, Mitochondrial/genetics , Muscular Diseases/genetics , RNA, Transfer/genetics , Tyrosine/genetics , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Humans , Mitochondria/genetics , Mitochondria/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/metabolism , Muscular Diseases/pathology , Mutation/genetics , Oxidative Phosphorylation , Phenotype
6.
Mitochondrion ; 55: 8-13, 2020 11.
Article En | MEDLINE | ID: mdl-32931937

Diagnosing complex V deficiencies caused by new variants in mitochondrial DNA is challenging due to the rarity, phenotypic diversity, and limited functional assessments. We describe a child with the m.9032T > C variant in MT-ATP6 encoding p.(Leu169Pro), with primary presentation of microcephaly, ataxia, hearing loss, and lactic acidosis. Functional studies reveal abnormal fragment F1 of complex V on blue native gel electrophoresis. Respirometry showed excessively tight coupling through complex V depressing oxygen consumption upon ADP stimulation and an excessive increase following uncoupling, in the presence of upregulation of mitochondrial biogenesis. These data add evidence about pathogenicity and functional impact of this variant.


Mitochondrial Diseases/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Amino Acid Substitution , Brain/diagnostic imaging , Child , High-Throughput Nucleotide Sequencing , Humans , Male , Mitochondrial Diseases/diagnostic imaging
7.
J Inherit Metab Dis ; 43(6): 1333-1348, 2020 11.
Article En | MEDLINE | ID: mdl-32681751

Asparagine-linked glycosylation 13 homolog (ALG13) encodes a nonredundant, highly conserved, X-linked uridine diphosphate (UDP)-N-acetylglucosaminyltransferase required for the synthesis of lipid linked oligosaccharide precursor and proper N-linked glycosylation. De novo variants in ALG13 underlie a form of early infantile epileptic encephalopathy known as EIEE36, but given its essential role in glycosylation, it is also considered a congenital disorder of glycosylation (CDG), ALG13-CDG. Twenty-four previously reported ALG13-CDG cases had de novo variants, but surprisingly, unlike most forms of CDG, ALG13-CDG did not show the anticipated glycosylation defects, typically detected by altered transferrin glycosylation. Structural homology modeling of two recurrent de novo variants, p.A81T and p.N107S, suggests both are likely to impact the function of ALG13. Using a corresponding ALG13-deficient yeast strain, we show that expressing yeast ALG13 with either of the highly conserved hotspot variants rescues the observed growth defect, but not its glycosylation abnormality. We present molecular and clinical data on 29 previously unreported individuals with de novo variants in ALG13. This more than doubles the number of known cases. A key finding is that a vast majority of the individuals presents with West syndrome, a feature shared with other CDG types. Among these, the initial epileptic spasms best responded to adrenocorticotropic hormone or prednisolone, while clobazam and felbamate showed promise for continued epilepsy treatment. A ketogenic diet seems to play an important role in the treatment of these individuals.


Congenital Disorders of Glycosylation/genetics , N-Acetylglucosaminyltransferases/deficiency , N-Acetylglucosaminyltransferases/genetics , Spasms, Infantile/genetics , Biomarkers , Child, Preschool , Congenital Disorders of Glycosylation/diagnosis , Diet, Ketogenic , Female , Glycosylation , Humans , Infant , Male , Mutation , N-Acetylglucosaminyltransferases/chemistry , Spasms, Infantile/diagnosis , Transferrin/metabolism
8.
J Inherit Metab Dis ; 43(5): 1024-1036, 2020 09.
Article En | MEDLINE | ID: mdl-32160317

Hydrogen sulfide, a signaling molecule formed mainly from cysteine, is catabolized by sulfide:quinone oxidoreductase (gene SQOR). Toxic hydrogen sulfide exposure inhibits complex IV. We describe children of two families with pathogenic variants in SQOR. Exome sequencing identified variants; SQOR enzyme activity was measured spectrophotometrically, protein levels evaluated by western blotting, and mitochondrial function was assayed. In family A, following a brief illness, a 4-year-old girl presented comatose with lactic acidosis and multiorgan failure. After stabilization, she remained comatose, hypotonic, had neurostorming episodes, elevated lactate, and Leigh-like lesions on brain imaging. She died shortly after. Her 8-year-old sister presented with a rapidly fatal episode of coma with lactic acidosis, and lesions in the basal ganglia and left cortex. Muscle and liver tissue had isolated decreased complex IV activity, but normal complex IV protein levels and complex formation. Both patients were homozygous for c.637G > A, which we identified as a founder mutation in the Lehrerleut Hutterite with a carrier frequency of 1 in 13. The resulting p.Glu213Lys change disrupts hydrogen bonding with neighboring residues, resulting in severely reduced SQOR protein and enzyme activity, whereas sulfide generating enzyme levels were unchanged. In family B, a boy had episodes of encephalopathy and basal ganglia lesions. He was homozygous for c.446delT and had severely reduced fibroblast SQOR enzyme activity and protein levels. SQOR dysfunction can result in hydrogen sulfide accumulation, which, consistent with its known toxicity, inhibits complex IV resulting in energy failure. In conclusion, SQOR deficiency represents a new, potentially treatable, cause of Leigh disease.


Hydrogen Sulfide/metabolism , Leigh Disease/enzymology , Mitochondria/metabolism , Oxidoreductases Acting on Sulfur Group Donors/genetics , Quinone Reductases/physiology , Acidosis, Lactic/pathology , Brain Diseases/pathology , Child, Preschool , Electron Transport Complex IV/metabolism , Family , Female , Homozygote , Humans , Hydrogen Sulfide/chemistry , Kinetics , Leigh Disease/metabolism , Magnetic Resonance Imaging , Male , Oxidation-Reduction , Quinone Reductases/chemistry
9.
Mol Genet Metab ; 130(1): 58-64, 2020 05.
Article En | MEDLINE | ID: mdl-32173240

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a fatal disorder characterized by progressive gastrointestinal dysmotility, peripheral neuropathy, leukoencephalopathy, skeletal myopathy, ophthalmoparesis, and ptosis. MNGIE stems from deficient thymidine phosphorylase activity (TP) leading to toxic elevations of plasma thymidine. Hematopoietic stem cell transplant (HSCT) restores TP activity and halts disease progression but has high transplant-related morbidity and mortality. Liver transplant (LT) was reported to restore TP activity in two adult MNGIE patients. We report successful LT in four additional MNGIE patients, including a pediatric patient. Our patients were diagnosed between ages 14 months and 36 years with elevated thymidine levels and biallelic pathogenic variants in TYMP. Two patients presented with progressive gastrointestinal dysmotility, and three demonstrated progressive peripheral neuropathy with two suffering limitations in ambulation. Two patients, including the child, had liver dysfunction and cirrhosis. Following LT, thymidine levels nearly normalized in all four patients and remained low for the duration of follow-up. Disease symptoms stabilized in all patients, with some manifesting improvements, including intestinal function. No patient died, and LT appeared to have a more favorable safety profile than HSCT, especially when liver disease is present. Follow-up studies will need to document the long-term impact of this new approach on disease outcome. Take Home Message: Liver transplantation is effective in stabilizing symptoms and nearly normalizing thymidine levels in patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) and may have an improved safety profile over hematopoietic stem cell transplant.


Liver Transplantation/methods , Mitochondria/metabolism , Mitochondrial Encephalomyopathies/therapy , Thymidine Phosphorylase/genetics , Adolescent , Adult , Esophageal Motility Disorders/genetics , Female , Hematopoietic Stem Cell Transplantation/mortality , Humans , Infant , Liver Transplantation/mortality , Magnetic Resonance Imaging , Male , Mitochondria/enzymology , Mitochondria/pathology , Mitochondrial Encephalomyopathies/diagnostic imaging , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Encephalomyopathies/physiopathology , Peripheral Nervous System Diseases/genetics , Thymidine/blood , Exome Sequencing
10.
Genet Med ; 22(5): 908-916, 2020 05.
Article En | MEDLINE | ID: mdl-31904027

PURPOSE: Multiple acyl-CoA dehydrogenase deficiency (MADD) is a life-threatening, ultrarare inborn error of metabolism. Case reports described successful D,L-3-hydroxybutyrate (D,L-3-HB) treatment in severely affected MADD patients, but systematic data on efficacy and safety is lacking. METHODS: A systematic literature review and an international, retrospective cohort study on clinical presentation, D,L-3-HB treatment method, and outcome in MADD(-like) patients. RESULTS: Our study summarizes 23 MADD(-like) patients, including 14 new cases. Median age at clinical onset was two months (interquartile range [IQR]: 8 months). Median age at starting D,L-3-HB was seven months (IQR: 4.5 years). D,L-3-HB doses ranged between 100 and 2600 mg/kg/day. Clinical improvement was reported in 16 patients (70%) for cardiomyopathy, leukodystrophy, liver symptoms, muscle symptoms, and/or respiratory failure. D,L-3-HB appeared not effective for neuropathy. Survival appeared longer upon D,L-3-HB compared with historical controls. Median time until first clinical improvement was one month, and ranged up to six months. Reported side effects included abdominal pain, constipation, dehydration, diarrhea, and vomiting/nausea. Median D,L-3-HB treatment duration was two years (IQR: 6 years). D,L-3-HB treatment was discontinued in 12 patients (52%). CONCLUSION: The strength of the current study is the international pooling of data demonstrating that D,L-3-HB treatment can be effective and safe in MADD(-like) patients.


Cardiomyopathies , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , 3-Hydroxybutyric Acid , Acyl-CoA Dehydrogenase/genetics , Humans , Infant , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Retrospective Studies
11.
Mitochondrion ; 44: 58-64, 2019 01.
Article En | MEDLINE | ID: mdl-29307858

Elevations of specific acylcarnitines in blood reflect carboxylase deficiencies, and have utility in newborn screening for life-threatening organic acidemias and other inherited metabolic diseases. In this report, we describe a newly-identified association of biochemical features of multiple carboxylase deficiency in individuals harboring mitochondrial DNA (mtDNA) mutations in MT-ATP6 and in whom organic acidemias and multiple carboxylase deficiencies were excluded. Using retrospective chart review, we identified eleven individuals with abnormally elevated propionylcarnitine (C3) or hydroxyisovalerylcarnitine (C5OH) with mutations in MT-ATP6, most commonly m.8993T>G in high heteroplasmy or homoplasmy. Most patients were ascertained on newborn screening; most had normal enzymatic or molecular genetic testing to exclude biotinidase and holocarboxylase synthetase deficiencies. MT-ATP6 is associated with some cases of Leigh disease; clinical outcomes in our cohort ranged from death from neurodegenerative disease in early childhood to clinically and developmentally normal after several years of follow-up. These cases expand the biochemical phenotype associated with MT-ATP6 mutations, especially m.8993T>G, to include acylcarnitine abnormalities mimicking carboxylase deficiency states. Clinicians should be aware of this association and its implications for newborn screening, and consider mtDNA sequencing in patients exhibiting similar acylcarnitine abnormalities that are biotin-unresponsive and in whom other enzymatic deficiencies have been excluded.


Mitochondrial Proton-Translocating ATPases/genetics , Multiple Carboxylase Deficiency/genetics , Multiple Carboxylase Deficiency/pathology , Mutation , Adolescent , Carnitine/analogs & derivatives , Carnitine/blood , Child , Child, Preschool , Cohort Studies , Female , Genetic Testing , Humans , Infant , Infant, Newborn , Male , Retrospective Studies , Young Adult
12.
Hum Mol Genet ; 27(20): 3475-3487, 2018 10 15.
Article En | MEDLINE | ID: mdl-29931299

Proteoglycans are among the most abundant and structurally complex biomacromolecules and play critical roles in connective tissues. They are composed of a core protein onto which glycosaminoglycan (GAG) side chains are attached via a linker region. Biallelic mutations in B3GALT6, encoding one of the linker region glycosyltransferases, are known to cause either spondyloepimetaphyseal dysplasia (SEMD) or a severe pleiotropic form of Ehlers-Danlos syndromes (EDS). This study provides clinical, molecular and biochemical data on 12 patients with biallelic B3GALT6 mutations. Notably, all patients have features of both EDS and SEMD. In addition, some patients have severe and potential life-threatening complications such as aortic dilatation and aneurysm, cervical spine instability and respiratory insufficiency. Whole-exome sequencing, next generation panel sequencing and direct sequencing identified biallelic B3GALT6 mutations in all patients. We show that these mutations reduce the amount of ß3GalT6 protein and lead to a complete loss of galactosyltransferase activity. In turn, this leads to deficient GAG synthesis, and ultrastructural abnormalities in collagen fibril organization. In conclusion, this study redefines the phenotype associated with B3GALT6 mutations on the basis of clinical, molecular and biochemical data in 12 patients, and provides an in-depth assessment of ß3GalT6 activity and GAG synthesis to better understand this rare condition.


Ehlers-Danlos Syndrome/genetics , Exome Sequencing , Galactosyltransferases/genetics , Mutation , Phenotype , Adult , Child , Child, Preschool , Ehlers-Danlos Syndrome/enzymology , Ehlers-Danlos Syndrome/pathology , Enzyme Assays , Female , Galactosyltransferases/metabolism , Gene Expression , High-Throughput Nucleotide Sequencing , Humans , Infant , Male
13.
Skelet Muscle ; 8(1): 17, 2018 05 31.
Article En | MEDLINE | ID: mdl-29855340

BACKGROUND: Transport protein particle (TRAPP) is a supramolecular protein complex that functions in localizing proteins to the Golgi compartment. The TRAPPC11 subunit has been implicated in muscle disease by virtue of homozygous and compound heterozygous deleterious mutations being identified in individuals with limb girdle muscular dystrophy and congenital muscular dystrophy. It remains unclear how this protein leads to muscle disease. Furthermore, a role for this protein, or any other membrane trafficking protein, in the etiology of the dystroglycanopathy group of muscular dystrophies has yet to be found. Here, using a multidisciplinary approach including genetics, immunofluorescence, western blotting, and live cell analysis, we implicate both TRAPPC11 and another membrane trafficking protein, GOSR2, in α-dystroglycan hypoglycosylation. CASE PRESENTATION: Subject 1 presented with severe epileptic episodes and subsequent developmental deterioration. Upon clinical evaluation she was found to have brain, eye, and liver abnormalities. Her serum aminotransferases and creatine kinase were abnormally high. Subjects 2 and 3 are siblings from a family unrelated to subject 1. Both siblings displayed hypotonia, muscle weakness, low muscle bulk, and elevated creatine kinase levels. Subject 3 also developed a seizure disorder. Muscle biopsies from subjects 1 and 3 were severely dystrophic with abnormal immunofluorescence and western blotting indicative of α-dystroglycan hypoglycosylation. Compound heterozygous mutations in TRAPPC11 were identified in subject 1: c.851A>C and c.965+5G>T. Cellular biological analyses on fibroblasts confirmed abnormal membrane trafficking. Subject 3 was found to have compound heterozygous mutations in GOSR2: c.430G>T and c.2T>G. Cellular biological analyses on fibroblasts from subject 3 using two different model cargo proteins did not reveal defects in protein transport. No mutations were found in any of the genes currently known to cause dystroglycanopathy in either individual. CONCLUSION: Recessive mutations in TRAPPC11 and GOSR2 are associated with congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. This is the first report linking membrane trafficking proteins to dystroglycanopathy and suggests that these genes should be considered in the diagnostic evaluation of patients with congenital muscular dystrophy and dystroglycanopathy.


Dystroglycans/metabolism , Muscular Dystrophies/genetics , Mutation , Qb-SNARE Proteins/genetics , Vesicular Transport Proteins/genetics , Abnormalities, Multiple/diagnostic imaging , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Female , Glycosylation , Humans , Infant , Muscle, Skeletal/metabolism , Muscular Dystrophies/congenital , Muscular Dystrophies/diagnostic imaging , Muscular Dystrophies/metabolism
14.
15.
Pediatr Nephrol ; 33(7): 1257-1261, 2018 07.
Article En | MEDLINE | ID: mdl-29637272

BACKGROUND: Nephrotic syndrome can be caused by a subgroup of mitochondrial diseases classified as primary coenzyme Q10 (CoQ10) deficiency. Pathogenic COQ2 variants are a cause of primary CoQ10 deficiency and present with phenotypes ranging from isolated nephrotic syndrome to fatal multisystem disease. CASE-DIAGNOSIS/TREATMENT: We report three pediatric patients with COQ2 variants presenting with nephrotic syndrome. Two of these patients had normal leukocyte CoQ10 levels prior to treatment. Pathologic findings varied from mesangial sclerosis to focal segmental glomerulosclerosis, with all patients having abnormal appearing mitochondria on kidney biopsy. In two of the three patients treated with CoQ10 supplementation, the nephrotic syndrome resolved; and at follow-up, both have normal renal function and stable proteinuria. CONCLUSIONS: COQ2 nephropathy should be suspected in patients presenting with nephrotic syndrome, although less common than disease due to mutations in NPHS1, NPHS2, and WT1. The index of suspicion should remain high, and we suggest that providers consider genetic evaluation even in patients with normal leukocyte CoQ10 levels, as levels may be within normal range even with significant clinical disease. Early molecular diagnosis and specific treatment are essential in the management of this severe yet treatable condition.


Alkyl and Aryl Transferases/genetics , Ataxia/drug therapy , Mitochondrial Diseases/drug therapy , Muscle Weakness/drug therapy , Nephrotic Syndrome/therapy , Ubiquinone/analogs & derivatives , Ubiquinone/deficiency , Ataxia/complications , Ataxia/diagnosis , Ataxia/genetics , Biopsy , Child , Child, Preschool , Genetic Testing , Humans , Kidney/pathology , Kidney Transplantation , Male , Mitochondrial Diseases/complications , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Muscle Weakness/complications , Muscle Weakness/diagnosis , Muscle Weakness/genetics , Nephrotic Syndrome/blood , Nephrotic Syndrome/diagnosis , Nephrotic Syndrome/etiology , Treatment Outcome , Ubiquinone/administration & dosage , Ubiquinone/genetics
...