Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
J Cell Physiol ; : e31466, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39392222

ABSTRACT

Legumain is a cysteine protease broadly associated with inflammation. It has been reported to cleave and activate protease-activated receptor 2 to provoke pain associated with oral cancer. Outside of gastric and colon cancer, little has been reported on the roles of legumain within the gastrointestinal tract. Using a legumain-selective activity-based probe, LE28, we report that legumain is activated within colonocytes and macrophages of the murine colon, and that it is upregulated in models of acute experimental colitis. We demonstrated that loss of legumain activity in colonocytes, either through pharmacological inhibition or gene deletion, had no impact on epithelial permeability in vitro. Moreover, legumain inhibition or deletion had no obvious impacts on symptoms or histological features associated with dextran sulfate sodium-induced colitis, suggesting its proteolytic activity is dispensable for colitis initiation. To gain insight into potential functions of legumain within the colon, we performed field asymmetric waveform ion mobility spectrometry-facilitated quantitative proteomics and N-terminomics analyses on naïve and inflamed colon tissue from wild-type and legumain-deficient mice. We identified 16 altered cleavage sites with an asparaginyl endopeptidase signature that may be direct substrates of legumain and a further 16 cleavage sites that may be indirectly mediated by legumain. We also analyzed changes in protein abundance and proteolytic events broadly associated with colitis in the gut, which permitted comparison to recent analyses on mucosal biopsies from patients with inflammatory bowel disease. Collectively, these results shed light on potential functions of legumain and highlight its potential roles in the transition from inflammation to colorectal cancer.

2.
Nanomedicine (Lond) ; 18(4): 317-330, 2023 02.
Article in English | MEDLINE | ID: mdl-37140430

ABSTRACT

Background & aims: Gold nanoparticles (AuNPs) are useful tools for noninvasive drug delivery. AuNP nebulization has shown poor deposition results, and AuNP tracking postadministration has involved methods inapplicable to clinical settings. The authors propose an intratracheal delivery method for minimal AuNP loss and computed tomography scans for noninvasive tracking. Materials & methods: Through high-frequency and directed nebulization postendotracheal intubation, the authors treated rats with AuNPs. Results & conclusion: The study showed a dose-dependent and bilateral distribution of AuNPs causing no short-term distress to the animal or risk of airway inflammation. The study demonstrated that AuNPs do not deposit in abdominal organs and show targeted delivery to human lung fibroblasts, offering a specific and noninvasive strategy for respiratory diseases requiring long-term therapies.


This study presents an alternative method for drug delivery involving gold nanoparticle aerosolization directly into the major airways. Direct nebulization prevents particle loss and avoids drug administration through the blood. The particles can be detected successfully via upper body scans, which are noninvasive and allow for on-demand monitoring. Nanoparticles are flexible tools that can be modified to target specific cells of interest and can be excreted upon completion of their function. These results could represent an alternative method of drug administration in patients needing repeated cytotoxic therapies with known off-target effects.


Subject(s)
Gold , Metal Nanoparticles , Humans , Rats , Animals , Drug Delivery Systems , Lung
3.
Proc Natl Acad Sci U S A ; 120(22): e2220979120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216510

ABSTRACT

The hypothesis that sustained G protein-coupled receptor (GPCR) signaling from endosomes mediates pain is based on studies with endocytosis inhibitors and lipid-conjugated or nanoparticle-encapsulated antagonists targeted to endosomes. GPCR antagonists that reverse sustained endosomal signaling and nociception are needed. However, the criteria for rational design of such compounds are ill-defined. Moreover, the role of natural GPCR variants, which exhibit aberrant signaling and endosomal trafficking, in maintaining pain is unknown. Herein, substance P (SP) was found to evoke clathrin-mediated assembly of endosomal signaling complexes comprising neurokinin 1 receptor (NK1R), Gαq/i, and ßarrestin-2. Whereas the FDA-approved NK1R antagonist aprepitant induced a transient disruption of endosomal signals, analogs of netupitant designed to penetrate membranes and persist in acidic endosomes through altered lipophilicity and pKa caused sustained inhibition of endosomal signals. When injected intrathecally to target spinal NK1R+ve neurons in knockin mice expressing human NK1R, aprepitant transiently inhibited nociceptive responses to intraplantar injection of capsaicin. Conversely, netupitant analogs had more potent, efficacious, and sustained antinociceptive effects. Mice expressing C-terminally truncated human NK1R, corresponding to a natural variant with aberrant signaling and trafficking, displayed attenuated SP-evoked excitation of spinal neurons and blunted nociceptive responses to SP. Thus, sustained antagonism of the NK1R in endosomes correlates with long-lasting antinociception, and domains within the C-terminus of the NK1R are necessary for the full pronociceptive actions of SP. The results support the hypothesis that endosomal signaling of GPCRs mediates nociception and provides insight into strategies for antagonizing GPCRs in intracellular locations for the treatment of diverse diseases.


Subject(s)
Endosomes , Receptors, Neurokinin-1 , Mice , Humans , Animals , Receptors, Neurokinin-1/genetics , Aprepitant/pharmacology , Substance P/pharmacology , Receptors, G-Protein-Coupled , Pain/drug therapy
4.
Biomaterials ; 285: 121536, 2022 06.
Article in English | MEDLINE | ID: mdl-35533442

ABSTRACT

Soft polymer nanoparticles designed to disassemble and release an antagonist of the neurokinin 1 receptor (NK1R) in endosomes provide efficacious yet transient relief from chronic pain. These micellar nanoparticles are unstable and rapidly release cargo, which may limit the duration of analgesia. We examined the efficacy of stable star polymer nanostars containing the NK1R antagonist aprepitant-amine for the treatment of chronic pain in mice. Nanostars continually released cargo for 24 h, trafficked through the endosomal system, and disrupted NK1R endosomal signaling. After intrathecal injection, nanostars accumulated in endosomes of spinal neurons. Nanostar-aprepitant reversed mechanical, thermal and cold allodynia and normalized nociceptive behavior more efficaciously than free aprepitant in preclinical models of neuropathic and inflammatory pain. Analgesia was maintained for >10 h. The sustained endosomal delivery of antagonists from slow-release nanostars provides effective and long-lasting reversal of chronic pain.


Subject(s)
Chronic Pain , Neurokinin-1 Receptor Antagonists , Animals , Aprepitant/pharmacology , Aprepitant/therapeutic use , Chronic Pain/drug therapy , Endosomes , Mice , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Polymers/pharmacology
5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35110404

ABSTRACT

G protein-coupled receptors (GPCRs) regulate many pathophysiological processes and are major therapeutic targets. The impact of disease on the subcellular distribution and function of GPCRs is poorly understood. We investigated trafficking and signaling of protease-activated receptor 2 (PAR2) in colitis. To localize PAR2 and assess redistribution during disease, we generated knockin mice expressing PAR2 fused to monomeric ultrastable green fluorescent protein (muGFP). PAR2-muGFP signaled and trafficked normally. PAR2 messenger RNA was detected at similar levels in Par2-mugfp and wild-type mice. Immunostaining with a GFP antibody and RNAScope in situ hybridization using F2rl1 (PAR2) and Gfp probes revealed that PAR2-muGFP was expressed in epithelial cells of the small and large intestine and in subsets of enteric and dorsal root ganglia neurons. In healthy mice, PAR2-muGFP was prominently localized to the basolateral membrane of colonocytes. In mice with colitis, PAR2-muGFP was depleted from the plasma membrane of colonocytes and redistributed to early endosomes, consistent with generation of proinflammatory proteases that activate PAR2 PAR2 agonists stimulated endocytosis of PAR2 and recruitment of Gαq, Gαi, and ß-arrestin to early endosomes of T84 colon carcinoma cells. PAR2 agonists increased paracellular permeability of colonic epithelial cells, induced colonic inflammation and hyperalgesia in mice, and stimulated proinflammatory cytokine release from segments of human colon. Knockdown of dynamin-2 (Dnm2), the major colonocyte isoform, and Dnm inhibition attenuated PAR2 endocytosis, signaling complex assembly and colonic inflammation and hyperalgesia. Thus, PAR2 endocytosis sustains protease-evoked inflammation and nociception and PAR2 in endosomes is a potential therapeutic target for colitis.


Subject(s)
Colon/metabolism , Endocytosis/physiology , Fluorescent Dyes/metabolism , Inflammation/metabolism , Pain/metabolism , Receptor, PAR-2/metabolism , Animals , Arrestins/metabolism , Cell Membrane/metabolism , Endosomes/metabolism , Female , Ganglia, Spinal/metabolism , Humans , Mice , Mice, Inbred C57BL , Nociception/physiology , Signal Transduction/physiology
6.
Nat Commun ; 13(1): 646, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115501

ABSTRACT

Efficacy of monoclonal antibodies against calcitonin gene-related peptide (CGRP) or its receptor (calcitonin receptor-like receptor/receptor activity modifying protein-1, CLR/RAMP1) implicates peripherally-released CGRP in migraine pain. However, the site and mechanism of CGRP-evoked peripheral pain remain unclear. By cell-selective RAMP1 gene deletion, we reveal that CGRP released from mouse cutaneous trigeminal fibers targets CLR/RAMP1 on surrounding Schwann cells to evoke periorbital mechanical allodynia. CLR/RAMP1 activation in human and mouse Schwann cells generates long-lasting signals from endosomes that evoke cAMP-dependent formation of NO. NO, by gating Schwann cell transient receptor potential ankyrin 1 (TRPA1), releases ROS, which in a feed-forward manner sustain allodynia via nociceptor TRPA1. When encapsulated into nanoparticles that release cargo in acidified endosomes, a CLR/RAMP1 antagonist provides superior inhibition of CGRP signaling and allodynia in mice. Our data suggest that the CGRP-mediated neuronal/Schwann cell pathway mediates allodynia associated with neurogenic inflammation, contributing to the algesic action of CGRP in mice.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Endosomes/metabolism , Hyperalgesia/physiopathology , Schwann Cells/metabolism , Signal Transduction/physiology , Animals , Calcitonin Receptor-Like Protein/genetics , Calcitonin Receptor-Like Protein/metabolism , Cells, Cultured , Female , HEK293 Cells , Humans , Hyperalgesia/diagnosis , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Middle Aged , Neurons/metabolism , Nitric Oxide/metabolism , Receptor Activity-Modifying Protein 1/genetics , Receptor Activity-Modifying Protein 1/metabolism , TRPA1 Cation Channel/genetics , TRPA1 Cation Channel/metabolism
7.
Gut ; 71(4): 695-704, 2022 04.
Article in English | MEDLINE | ID: mdl-33785555

ABSTRACT

OBJECTIVE: The effectiveness of µ-opioid receptor (MOPr) agonists for treatment of visceral pain is compromised by constipation, respiratory depression, sedation and addiction. We investigated whether a fentanyl analogue, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), which preferentially activates MOPr in acidified diseased tissues, would inhibit pain in a preclinical model of inflammatory bowel disease (IBD) without side effects in healthy tissues. DESIGN: Antinociceptive actions of NFEPP and fentanyl were compared in control mice and mice with dextran sodium sulfate colitis by measuring visceromotor responses to colorectal distension. Patch clamp and extracellular recordings were used to assess nociceptor activation. Defecation, respiration and locomotion were assessed. Colonic migrating motor complexes were assessed by spatiotemporal mapping of isolated tissue. NFEPP-induced MOPr signalling and trafficking were studied in human embryonic kidney 293 cells. RESULTS: NFEPP inhibited visceromotor responses to colorectal distension in mice with colitis but not in control mice, consistent with acidification of the inflamed colon. Fentanyl inhibited responses in both groups. NFEPP inhibited the excitability of dorsal root ganglion neurons and suppressed mechanical sensitivity of colonic afferent fibres in acidified but not physiological conditions. Whereas fentanyl decreased defecation and caused respiratory depression and hyperactivity in mice with colitis, NFEPP was devoid of these effects. NFEPP did not affect colonic migrating motor complexes at physiological pH. NFEPP preferentially activated MOPr in acidified extracellular conditions to inhibit cAMP formation, recruit ß-arrestins and evoke MOPr endocytosis. CONCLUSION: In a preclinical IBD model, NFEPP preferentially activates MOPr in acidified microenvironments of inflamed tissues to induce antinociception without causing respiratory depression, constipation and hyperactivity.


Subject(s)
Colitis , Colorectal Neoplasms , Inflammatory Bowel Diseases , Respiratory Insufficiency , Visceral Pain , Animals , Colitis/chemically induced , Colon , Constipation , Fentanyl/adverse effects , Humans , Inflammatory Bowel Diseases/complications , Mice , Receptors, Opioid , Tumor Microenvironment
8.
Cancers (Basel) ; 13(18)2021 Sep 19.
Article in English | MEDLINE | ID: mdl-34572924

ABSTRACT

Oral squamous cell carcinoma (SCC) pain is more prevalent and severe than pain generated by any other form of cancer. We previously showed that protease-activated receptor-2 (PAR2) contributes to oral SCC pain. Cathepsin S is a lysosomal cysteine protease released during injury and disease that can activate PAR2. We report here a role for cathepsin S in PAR2-dependent cancer pain. We report that cathepsin S was more active in human oral SCC than matched normal tissue, and in an orthotopic xenograft tongue cancer model than normal tongue. The multiplex immunolocalization of cathepsin S in human oral cancers suggests that carcinoma and macrophages generate cathepsin S in the oral cancer microenvironment. After cheek or paw injection, cathepsin S evoked nociception in wild-type mice but not in mice lacking PAR2 in Nav1.8-positive neurons (Par2Nav1.8), nor in mice treated with LY3000328 or an endogenous cathepsin S inhibitor (cystatin C). The human oral SCC cell line (HSC-3) with homozygous deletion of the gene for cathepsin S (CTSS) with CRISPR/Cas9 provoked significantly less mechanical allodynia and thermal hyperalgesia, as did those treated with LY3000328, compared to the control cancer mice. Our results indicate that cathepsin S is activated in oral SCC, and that cathepsin S contributes to cancer pain through PAR2 on neurons.

9.
Gut ; 70(5): 970-981, 2021 05.
Article in English | MEDLINE | ID: mdl-33272979

ABSTRACT

Chronic pain is a hallmark of functional disorders, inflammatory diseases and cancer of the digestive system. The mechanisms that initiate and sustain chronic pain are incompletely understood, and available therapies are inadequate. This review highlights recent advances in the structure and function of pronociceptive and antinociceptive G protein-coupled receptors (GPCRs) that provide insights into the mechanisms and treatment of chronic pain. This knowledge, derived from studies of somatic pain, can guide research into visceral pain. Mediators from injured tissues transiently activate GPCRs at the plasma membrane of neurons, leading to sensitisation of ion channels and acute hyperexcitability and nociception. Sustained agonist release evokes GPCR redistribution to endosomes, where persistent signalling regulates activity of channels and genes that control chronic hyperexcitability and nociception. Endosomally targeted GPCR antagonists provide superior pain relief in preclinical models. Biased agonists stabilise GPCR conformations that favour signalling of beneficial actions at the expense of detrimental side effects. Biased agonists of µ-opioid receptors (MOPrs) can provide analgesia without addiction, respiratory depression and constipation. Opioids that preferentially bind to MOPrs in the acidic microenvironment of diseased tissues produce analgesia without side effects. Allosteric modulators of GPCRs fine-tune actions of endogenous ligands, offering the prospect of refined pain control. GPCR dimers might function as distinct therapeutic targets for nociception. The discovery that GPCRs that control itch also mediate irritant sensation in the colon has revealed new targets. A deeper understanding of GPCR structure and function in different microenvironments offers the potential of developing superior treatments for GI pain.


Subject(s)
Chronic Pain/drug therapy , Chronic Pain/metabolism , Gastrointestinal Diseases/drug therapy , Gastrointestinal Diseases/metabolism , Receptors, G-Protein-Coupled/metabolism , Analgesics/pharmacology , Animals , Humans , Ligands , Nociception/drug effects , Receptors, G-Protein-Coupled/antagonists & inhibitors , Sensory System Agents/pharmacology , Signal Transduction/drug effects , Viscera/innervation
10.
Proc Natl Acad Sci U S A ; 117(26): 15281-15292, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32546520

ABSTRACT

Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic mucosa from patients and mice with colitis released opioids that activated DOPr on nociceptors to cause a sustained decrease in excitability. DOPr agonists inhibited mechanically sensitive colonic nociceptors. DOPr endocytosis and endosomal signaling by protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) pathways mediated the sustained inhibitory actions of endogenous opioids and DOPr agonists. DOPr agonists stimulated the recruitment of Gαi/o and ß-arrestin1/2 to endosomes. Analysis of compartmentalized signaling revealed a requirement of DOPr endocytosis for activation of PKC at the plasma membrane and in the cytosol and ERK in the nucleus. We explored a nanoparticle delivery strategy to evaluate whether endosomal DOPr might be a therapeutic target for pain. The DOPr agonist DADLE was coupled to a liposome shell for targeting DOPr-positive nociceptors and incorporated into a mesoporous silica core for release in the acidic and reducing endosomal environment. Nanoparticles activated DOPr at the plasma membrane, were preferentially endocytosed by DOPr-expressing cells, and were delivered to DOPr-positive early endosomes. Nanoparticles caused a long-lasting activation of DOPr in endosomes, which provided sustained inhibition of nociceptor excitability and relief from inflammatory pain. Conversely, nanoparticles containing a DOPr antagonist abolished the sustained inhibitory effects of DADLE. Thus, DOPr in endosomes is an endogenous mechanism and a therapeutic target for relief from chronic inflammatory pain.


Subject(s)
Enkephalin, Leucine-2-Alanine/pharmacology , Inflammation/complications , Pain/drug therapy , Pain/metabolism , Receptors, Opioid, delta/agonists , Animals , Colon/innervation , Enkephalin, Leucine-2-Alanine/administration & dosage , HEK293 Cells , Humans , Mice , Nanoparticles/administration & dosage , Neurons , Nociceptors/metabolism , Receptors, Opioid, delta/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology
11.
Cell Mol Gastroenterol Hepatol ; 10(3): 527-543, 2020.
Article in English | MEDLINE | ID: mdl-32408032

ABSTRACT

BACKGROUND & AIMS: Psychological stress is a trigger for the development of irritable bowel syndrome and associated symptoms including abdominal pain. Although irritable bowel syndrome patients show increased activation in the limbic brain, including the amygdala, the underlying molecular and cellular mechanisms regulating visceral nociception in the central nervous system are incompletely understood. In a rodent model of chronic stress, we explored the role of microglia in the central nucleus of the amygdala (CeA) in controlling visceral sensitivity. Microglia are activated by environmental challenges such as stress, and are able to modify neuronal activity via synaptic remodeling and inflammatory cytokine release. Inflammatory gene expression and microglial activity are regulated negatively by nuclear glucocorticoid receptors (GR), which are suppressed by the stress-activated pain mediator p38 mitogen-activated protein kinases (MAPK). METHODS: Fisher-344 male rats were exposed to water avoidance stress (WAS) for 1 hour per day for 7 days. Microglia morphology and the expression of phospho-p38 MAPK and GR were analyzed via immunofluorescence. Microglia-mediated synaptic remodeling was investigated by quantifying the number of postsynaptic density protein 95-positive puncta. Cytokine expression levels in the CeA were assessed via quantitative polymerase chain reaction and a Luminex assay (Bio-Rad, Hercules, CA). Stereotaxic infusion into the CeA of minocycline to inhibit, or fractalkine to activate, microglia was followed by colonic sensitivity measurement via a visceromotor behavioral response to isobaric graded pressures of tonic colorectal distension. RESULTS: WAS induced microglial deramification in the CeA. Moreover, WAS induced a 3-fold increase in the expression of phospho-p38 and decreased the ratio of nuclear GR in the microglia. The number of microglia-engulfed postsynaptic density protein 95-positive puncta in the CeA was increased 3-fold by WAS, while cytokine levels were unchanged. WAS-induced changes in microglial morphology, microglia-mediated synaptic engulfment in the CeA, and visceral hypersensitivity were reversed by minocycline whereas in stress-naïve rats, fractalkine induced microglial deramification and visceral hypersensitivity. CONCLUSIONS: Our data show that chronic stress induces visceral hypersensitivity in male rats and is associated with microglial p38 MAPK activation, GR dysfunction, and neuronal remodeling in the CeA.


Subject(s)
Central Amygdaloid Nucleus/immunology , Irritable Bowel Syndrome/immunology , Microglia/immunology , Stress, Psychological/complications , Visceral Pain/immunology , Animals , Central Amygdaloid Nucleus/cytology , Central Amygdaloid Nucleus/drug effects , Central Amygdaloid Nucleus/pathology , Chemokine CX3CL1/administration & dosage , Disease Models, Animal , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Male , Microglia/drug effects , Microglia/pathology , Minocycline/administration & dosage , Neuronal Plasticity/immunology , Rats , Receptors, Glucocorticoid/metabolism , Stereotaxic Techniques , Stress, Psychological/immunology , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Neurogastroenterol Motil ; 32(6): e13814, 2020 06.
Article in English | MEDLINE | ID: mdl-32022388

ABSTRACT

BACKGROUND: Gastrointestinal (GI) and extra-GI symptoms/manifestations represent key clinical features of patients with non-celiac gluten/wheat sensitivity (NCG/WS). This study aimed to investigate neuro-immune (focusing on mast cells, MCs) interactions in the duodenal submucosa of patients with NCG/WS. METHODS: Submucosal whole mounts from duodenal biopsies of 34 patients with self-reported NCG/WS, 28 with celiac disease (CD), 13 with functional dyspepsia (FD), and 24 healthy controls (HC) were analyzed by immunohistochemistry. Quantitative data on neuronal and MCs density and the percentage of MCs in close vicinity to nerves were obtained, and correlations among neurons, MC density and MC-nerve distance (D), and symptoms were assessed in the three groups. KEY RESULTS: The number of submucosal neurons was not different among groups. In NCG/WS, MC density was not different from HC, while it was slightly increased vs. CD (P = .07) and significantly decreased vs. FD (P < .05). The percentage of MCs close to nerves (D < 15 µm) was similarly increased in all three pathological groups vs. HC (P < .001). In NCG/WS, MC infiltration correlated with bloating (P = .001) and abdominal pain severity (P = .03) and the percentage of MCs in proximity to neurons correlated with the number of GI symptoms (D < 5 µm; P = .05), bloating and abdominal pain severity (D < 15um; P = .01). CONCLUSIONS AND INFERENCES: Submucosal MC infiltration and the close (within 15 µm) MC-to-nerve proximity in the duodenum of NCG/WS patients are features providing a histopathological basis to better understand GI symptoms in this condition.


Subject(s)
Abdominal Pain/immunology , Glutens/adverse effects , Mast Cells/immunology , Neurons/immunology , Wheat Hypersensitivity/immunology , Abdominal Pain/etiology , Abdominal Pain/pathology , Adolescent , Adult , Duodenum/immunology , Duodenum/pathology , Female , Glutens/immunology , Humans , Male , Mast Cells/pathology , Middle Aged , Neurons/pathology , Severity of Illness Index , Wheat Hypersensitivity/complications , Young Adult
13.
Nat Nanotechnol ; 14(12): 1150-1159, 2019 12.
Article in English | MEDLINE | ID: mdl-31686009

ABSTRACT

Nanoparticle-mediated drug delivery is especially useful for targets within endosomes because of the endosomal transport mechanisms of many nanomedicines within cells. Here, we report the design of a pH-responsive, soft polymeric nanoparticle for the targeting of acidified endosomes to precisely inhibit endosomal signalling events leading to chronic pain. In chronic pain, the substance P (SP) neurokinin 1 receptor (NK1R) redistributes from the plasma membrane to acidified endosomes, where it signals to maintain pain. Therefore, the NK1R in endosomes provides an important target for pain relief. The pH-responsive nanoparticles enter cells by clathrin- and dynamin-dependent endocytosis and accumulate in NK1R-containing endosomes. Following intrathecal injection into rodents, the nanoparticles, containing the FDA-approved NK1R antagonist aprepitant, inhibit SP-induced activation of spinal neurons and thus prevent pain transmission. Treatment with the nanoparticles leads to complete and persistent relief from nociceptive, inflammatory and neuropathic nociception and offers a much-needed non-opioid treatment option for chronic pain.


Subject(s)
Aprepitant/administration & dosage , Chronic Pain/drug therapy , Delayed-Action Preparations/metabolism , Nanoparticles/metabolism , Neurokinin-1 Receptor Antagonists/administration & dosage , Animals , Aprepitant/pharmacokinetics , Aprepitant/therapeutic use , Cell Line , Chronic Pain/metabolism , Drug Delivery Systems , Endosomes/metabolism , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Male , Mice, Inbred C57BL , Neurokinin-1 Receptor Antagonists/pharmacokinetics , Neurokinin-1 Receptor Antagonists/therapeutic use , Rats , Receptors, Neurokinin-1/metabolism
14.
J Biol Chem ; 294(27): 10649-10662, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31142616

ABSTRACT

Proteases sustain hyperexcitability and pain by cleaving protease-activated receptor-2 (PAR2) on nociceptors through distinct mechanisms. Whereas trypsin induces PAR2 coupling to Gαq, Gαs, and ß-arrestins, cathepsin-S (CS) and neutrophil elastase (NE) cleave PAR2 at distinct sites and activate it by biased mechanisms that induce coupling to Gαs, but not to Gαq or ß-arrestins. Because proteases activate PAR2 by irreversible cleavage, and activated PAR2 is degraded in lysosomes, sustained extracellular protease-mediated signaling requires mobilization of intact PAR2 from the Golgi apparatus or de novo synthesis of new receptors by incompletely understood mechanisms. We found here that trypsin, CS, and NE stimulate PAR2-dependent activation of protein kinase D (PKD) in the Golgi of HEK293 cells, in which PKD regulates protein trafficking. The proteases stimulated translocation of the PKD activator Gßγ to the Golgi, coinciding with PAR2 mobilization from the Golgi. Proteases also induced translocation of a photoconverted PAR2-Kaede fusion protein from the Golgi to the plasma membrane of KNRK cells. After incubation of HEK293 cells and dorsal root ganglia neurons with CS, NE, or trypsin, PAR2 responsiveness initially declined, consistent with PAR2 cleavage and desensitization, and then gradually recovered. Inhibitors of PKD, Gßγ, and protein translation inhibited recovery of PAR2 responsiveness. PKD and Gßγ inhibitors also attenuated protease-evoked mechanical allodynia in mice. We conclude that proteases that activate PAR2 by canonical and biased mechanisms stimulate PKD in the Golgi; PAR2 mobilization and de novo synthesis repopulate the cell surface with intact receptors and sustain nociceptive signaling by extracellular proteases.


Subject(s)
GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Protein Kinase C/metabolism , Receptor, PAR-2/metabolism , Animals , Cathepsins/metabolism , Cell Membrane/metabolism , GTP-Binding Protein beta Subunits/antagonists & inhibitors , GTP-Binding Protein gamma Subunits/antagonists & inhibitors , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Golgi Apparatus/metabolism , HEK293 Cells , Humans , Hyperalgesia/metabolism , Hyperalgesia/pathology , Hyperalgesia/prevention & control , Leukocyte Elastase/metabolism , Mice , Mice, Inbred C57BL , Protein Kinase C/antagonists & inhibitors , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Receptor, PAR-2/agonists , Signal Transduction/drug effects , Xanthenes/administration & dosage , Xanthenes/pharmacology
15.
Gastroenterology ; 157(2): 507-521.e4, 2019 08.
Article in English | MEDLINE | ID: mdl-31071306

ABSTRACT

BACKGROUND & AIMS: Mood disorders and constipation are often comorbid, yet their shared etiologies have rarely been explored. The neurotransmitter serotonin (5-HT) regulates central nervous system and enteric nervous system (ENS) development and long-term functions, including gastrointestinal (GI) motility and mood. Therefore, defects in neuron production of 5-HT might result in brain and intestinal dysfunction. Tryptophan hydroxylase 2 (TPH2) is the rate-limiting enzyme in 5-HT biosynthesis. A variant of TPH2 that encodes the R441H substitution (TPH2-R441H) was identified in individuals with severe depression. We studied mice with an analogous mutation (TPH2-R439H), which results in a 60%-80% decrease in levels of 5-HT in the central nervous system and behaviors associated with depression in humans. Feeding chow that contains 5-HTP slow release (5-HTP SR) to TPH2-R439H mice restores levels of 5-HT in the central nervous system and reduces depressive-like behaviors. METHODS: We compared the effects of feeding chow, with or without 5-HTP SR, to mice with the TPH2-R439H mutation and without this mutation (control mice). Myenteric and submucosal plexuses were isolated from all 4 groups of mice, and immunocytochemistry was used to quantify total enteric neurons, serotonergic neurons, and 5-HT-dependent subsets of neurons. We performed calcium imaging experiments to evaluate responses of enteric neurons to tryptamine-evoked release of endogenous 5-HT. In live mice, we measured total GI transit, gastric emptying, small intestinal transit, and propulsive colorectal motility. To measure colonic migrating motor complexes (CMMCs), we isolated colons and constructed spatiotemporal maps along the proximodistal length to quantify the frequency, velocity, and length of CMMCs. We measured villus height, crypt perimeter, and relative densities of enterochromaffin and enteroendocrine cells in small intestinal tissue. RESULTS: Levels of 5-HT were significantly lower in enteric neurons from TPH2-R439H mice than from control mice. TPH2-R439H mice had abnormalities in ENS development and ENS-mediated GI functions, including reduced motility and intestinal epithelial growth. Total GI transit and propulsive colorectal motility were slower in TPH2-R439H mice than controls, and CMMCs were slower and less frequent. Villus height and crypt perimeter were significantly decreased in colon tissues from TPH2-R439H mice compared with controls. Administration of 5-HTP SR to adult TPH2-R439H mice restored 5-HT to enteric neurons and reversed these abnormalities. Adult TPH2-R439H mice given oral 5-HTP SR had normalized numbers of enteric neurons, total GI transit, and colonic motility. Intestinal tissue from these mice had normal measures of CMMCs and enteric epithelial growth CONCLUSIONS: In studies of TPH2-R439H mice, we found evidence for reduced release of 5-HT from enteric neurons that results in defects in ENS development and GI motility. Our findings indicate that neuron production of 5-HT links constipation with mood dysfunction. Administration of 5-HTP SR to mice restored 5-HT to the ENS and normalized GI motility and growth of the enteric epithelium. 5-HTP SR might be used to treat patients with intestinal dysfunction associated with low levels of 5-HT.


Subject(s)
5-Hydroxytryptophan/administration & dosage , Constipation/drug therapy , Depression/drug therapy , Gastrointestinal Tract/physiopathology , Serotonin/metabolism , Animals , Constipation/etiology , Constipation/physiopathology , Delayed-Action Preparations/administration & dosage , Depression/complications , Depression/genetics , Depression/physiopathology , Disease Models, Animal , Enteric Nervous System/drug effects , Enteric Nervous System/physiopathology , Female , Gastrointestinal Motility/drug effects , Gastrointestinal Motility/physiology , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/innervation , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Neurons/drug effects , Neurons/metabolism , Treatment Outcome , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
16.
Neurogastroenterol Motil ; 31(4): e13479, 2019 04.
Article in English | MEDLINE | ID: mdl-30311722

ABSTRACT

BACKGROUND: The expression of RET in the developing enteric nervous system (ENS) suggests that RET may contribute to adult intestinal function. ENS cholinergic nerves play a critical role in the control of colonic function through the release of acetylcholine (ACh). In the current study, we hypothesized that a RET-mediated mechanism may regulate colonic ion transport and motility through modulation of cholinergic nerves. METHODS: The effect of RET inhibition on active ion transport was assessed electrophysiologically in rat colonic tissue mounted in Ussing chambers via measurements of short circuit current (Isc) upon electrical field stimulation (EFS) or pharmacologically with cholinergic agonists utilizing a gastrointestinal (GI)-restricted RET inhibitor. We assessed the effect of the RET inhibitor on propulsive motility via quantification of fecal pellet output (FPO) induced by the acetylcholinesterase inhibitor neostigmine. KEY RESULTS: We found that enteric ganglia co-expressed RET and choline acetyltransferase (ChAT) transcripts. In vitro, the RET kinase inhibitor GSK3179106 attenuated the mean increase in Isc induced by either EFS or carbachol but not bethanechol. In vivo, GSK3179106 significantly reduced the prokinetic effect of neostigmine. CONCLUSION AND INFERENCES: Our findings provide evidence that RET-mediated mechanisms regulate colonic function by maintaining cholinergic neuronal function and enabling ACh-evoked chloride secretion and motility. We suggest that modulating the cholinergic control of the colon via a RET inhibitor may represent a novel target for the treatment of intestinal disorders associated with increased secretion and accelerated GI transit such as irritable bowel syndrome with diarrhea (IBS-D).


Subject(s)
Cholinergic Neurons/drug effects , Colon/drug effects , Gastrointestinal Motility/drug effects , Intestinal Mucosa/drug effects , Ion Transport/drug effects , Proto-Oncogene Proteins c-ret/antagonists & inhibitors , Animals , Choline O-Acetyltransferase/metabolism , Cholinergic Agonists/pharmacology , Cholinergic Neurons/metabolism , Colon/metabolism , Defecation/drug effects , Enteric Nervous System/drug effects , Enteric Nervous System/metabolism , Gastrointestinal Transit/drug effects , Intestinal Mucosa/metabolism , Male , Proto-Oncogene Proteins c-ret/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
17.
Proc Natl Acad Sci U S A ; 115(31): E7438-E7447, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30012612

ABSTRACT

Once activated at the surface of cells, G protein-coupled receptors (GPCRs) redistribute to endosomes, where they can continue to signal. Whether GPCRs in endosomes generate signals that contribute to human disease is unknown. We evaluated endosomal signaling of protease-activated receptor-2 (PAR2), which has been proposed to mediate pain in patients with irritable bowel syndrome (IBS). Trypsin, elastase, and cathepsin S, which are activated in the colonic mucosa of patients with IBS and in experimental animals with colitis, caused persistent PAR2-dependent hyperexcitability of nociceptors, sensitization of colonic afferent neurons to mechanical stimuli, and somatic mechanical allodynia. Inhibitors of clathrin- and dynamin-dependent endocytosis and of mitogen-activated protein kinase kinase-1 prevented trypsin-induced hyperexcitability, sensitization, and allodynia. However, they did not affect elastase- or cathepsin S-induced hyperexcitability, sensitization, or allodynia. Trypsin stimulated endocytosis of PAR2, which signaled from endosomes to activate extracellular signal-regulated kinase. Elastase and cathepsin S did not stimulate endocytosis of PAR2, which signaled from the plasma membrane to activate adenylyl cyclase. Biopsies of colonic mucosa from IBS patients released proteases that induced persistent PAR2-dependent hyperexcitability of nociceptors, and PAR2 association with ß-arrestins, which mediate endocytosis. Conjugation to cholestanol promoted delivery and retention of antagonists in endosomes containing PAR2 A cholestanol-conjugated PAR2 antagonist prevented persistent trypsin- and IBS protease-induced hyperexcitability of nociceptors. The results reveal that PAR2 signaling from endosomes underlies the persistent hyperexcitability of nociceptors that mediates chronic pain of IBS. Endosomally targeted PAR2 antagonists are potential therapies for IBS pain. GPCRs in endosomes transmit signals that contribute to human diseases.


Subject(s)
Chronic Pain/etiology , Endosomes/physiology , Irritable Bowel Syndrome/physiopathology , Receptor, PAR-2/physiology , Signal Transduction/physiology , Animals , Endocytosis , Extracellular Signal-Regulated MAP Kinases/physiology , Humans , Nociception , Nociceptors/physiology , Trypsin/pharmacology
18.
Urology ; 116: 230.e1-230.e7, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29545038

ABSTRACT

OBJECTIVE: To test in an animal model the hypothesis that recombinant human proteoglycan 4 (rhPRG4; lubricin), a highly O-glycosylated mucin-like glycoprotein, may be a novel surface-active therapeutic for treating bladder permeability with comorbid bowel permeability. Previously we showed that inducing bladder permeability in rats with dilute protamine sulfate (PS) produced colonic permeability and visceral hypersensitivity, suggesting increased bladder permeability could represent an etiologic factor in both interstitial cystitis-bladder pain syndrome and irritable bowel syndrome. METHODS: We used an animal model of catheterized ovariectomized female rats instilled intravesically with 1 mg/mL PS for 10 minutes that after 24 hours were treated with 1.2 mg/mL lubricin or with vehicle alone. After 24 hours the bladder and colon were removed and permeability assessed electrophysiologically with the Ussing chamber to measure the transepithelial electrical resistance. A second set of rats was treated identically, except permeability was assessed on day 3 and on day 5 using contrast-enhanced magnetic resonance imaging with gadolinium diethylenetriamine penta-acetic acid instilled into the bladder. RESULTS: Intravesical lubricin reversed bladder permeability induced by PS and prevented the concomitant increase in permeability induced in the bowel (organ crosstalk). The protective effect was confirmed with magnetic resonance imaging, and because individual rats could be followed over time, the impermeability of the bladder restored by rhPRG4 remained for 5 days. CONCLUSION: These data indicate that instillation of rhPRG4 into a permeable bladder can restore its normally impermeable state, and that the effect lasts for 5 days and also prevents bowel symptoms often comorbid with interstitial cystitis-bladder pain syndrome.


Subject(s)
Colon/metabolism , Cystitis, Interstitial/drug therapy , Irritable Bowel Syndrome/drug therapy , Proteoglycans/therapeutic use , Urinary Bladder/metabolism , Administration, Intravesical , Animals , Colon/diagnostic imaging , Colon/drug effects , Colon/pathology , Cystitis, Interstitial/etiology , Cystitis, Interstitial/pathology , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Humans , Irritable Bowel Syndrome/etiology , Irritable Bowel Syndrome/pathology , Magnetic Resonance Imaging , Permeability/drug effects , Proteoglycans/pharmacology , Rats , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Urinary Bladder/diagnostic imaging , Urinary Bladder/drug effects , Urinary Bladder/pathology
19.
Am J Physiol Gastrointest Liver Physiol ; 314(3): G448-G457, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29351398

ABSTRACT

In vivo optogenetics identifies brain circuits controlling behaviors in conscious animals by using light to alter neuronal function and offers a novel tool to study the brain-gut axis. Using adenoviral-mediated expression, we aimed to investigate whether photoactivation with channelrhodopsin (ChR2) or photoinhibition with halorhodopsin (HR3.0) of fibers originating from the central nucleus of the amygdala (CeA) at the bed nucleus of the stria terminalis (BNST) had any effect on colonic sensitivity. We also investigated whether there was any deleterious effect of the adenovirus on the neuronal population or the neuronal phenotype within the CeA-BNST circuitry activated during the optogenetic stimulation. In male rats, the CeA was infected with vectors expressing ChR2 or HR3.0 and fiber optic cannulae were implanted on the BNST. After 8-10 wk, the response to graded, isobaric colonic distension was measured with and without laser stimulation of CeA fibers at the BNST. Immunohistochemistry and histology were used to evaluate vector expression, neuronal integrity, and neurochemical phenotype. Photoactivation of CeA fibers at the BNST with ChR2 induced colonic hypersensitivity, whereas photoinhibition of CeA fibers at the BNST with HR3.0 had no effect on colonic sensitivity. Control groups treated with virus expressing reporter proteins showed no abnormalities in neuronal morphology, neuronal number, or neurochemical phenotype following laser stimulation. Our experimental findings reveal that optogenetic activation of discrete brain nuclei can be used to advance our understanding of complex visceral nociceptive circuitry in a freely moving rat model. NEW & NOTEWORTHY Our findings reveal that optogenetic technology can be employed as a tool to advance understanding of the brain-gut axis. Using adenoviral-mediated expression of opsins, which were activated by laser light and targeted by fiber optic cannulae, we examined central nociceptive circuits mediating visceral pain in a freely moving rat. Photoactivation of amygdala fibers in the stria terminalis with channelrhodopsin induced colonic hypersensitivity, whereas inhibition of the same fibers with halorhodopsin did not alter colonic sensitivity.


Subject(s)
Abdominal Pain/etiology , Amygdala/physiopathology , Colon/innervation , Optogenetics , Visceral Pain/etiology , Abdominal Pain/genetics , Abdominal Pain/metabolism , Abdominal Pain/physiopathology , Adenoviridae/genetics , Amygdala/metabolism , Animals , Channelrhodopsins/biosynthesis , Channelrhodopsins/genetics , Consciousness , Disease Models, Animal , GABAergic Neurons/metabolism , Genetic Vectors , Halorhodopsins/biosynthesis , Halorhodopsins/genetics , Lasers, Solid-State , Male , Mechanotransduction, Cellular , Neural Inhibition , Neural Pathways/physiopathology , Optogenetics/instrumentation , Pressure , Rats, Inbred F344 , Visceral Pain/genetics , Visceral Pain/metabolism , Visceral Pain/physiopathology
20.
Adv Exp Med Biol ; 891: 123-33, 2016.
Article in English | MEDLINE | ID: mdl-27379640

ABSTRACT

Enteric neuropathy is a term indicating an impairment of the innervation supplying the gastrointestinal tract. The clinical phenotypes of the enteric neuropathies are the 'tip of the iceberg' of severe functional digestive diseases, such as intestinal pseudo-obstruction syndromes (e.g., chronic intestinal pseudo-obstruction). Despite progress acquired over the years, the pathogenetic mechanisms leading to enteric neuropathies are still far from being elucidated and the therapeutic approaches to these patients are mainly supportive, rather than curative.The purpose of this chapter is to review the advancements that have been done in the knowledge of enteric neuropathies identified in adult patients ('tomorrow'), going through where we currently are ('today') following a brief history of the major milestones on the pioneering discoveries in the field ('yesterday').


Subject(s)
Enteric Nervous System/physiopathology , Gastrointestinal Diseases/physiopathology , Intestinal Pseudo-Obstruction/physiopathology , Chronic Disease , Enteric Nervous System/pathology , Gastrointestinal Diseases/pathology , Humans , Intestinal Pseudo-Obstruction/pathology
SELECTION OF CITATIONS
SEARCH DETAIL