Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(47): 8043-8057, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37722850

ABSTRACT

The malignant brain cancer glioblastoma (GBM) contains groups of highly invasive cells that drive tumor progression as well as recurrence after surgery and chemotherapy. The molecular mechanisms that enable these GBM cells to exit the primary mass and disperse throughout the brain remain largely unknown. Here we report using human tumor specimens and primary spheroids from male and female patients that glial cell adhesion molecule (GlialCAM), which has normal roles in brain astrocytes and is mutated in the developmental brain disorder megalencephalic leukoencephalopathy with subcortical cysts (MLC), is differentially expressed in subpopulations of GBM cells. High levels of GlialCAM promote cell-cell adhesion and a proliferative GBM cell state in the tumor core. In contrast, GBM cells with low levels of GlialCAM display diminished proliferation and enhanced invasion into the surrounding brain parenchyma. RNAi-mediated inhibition of GlialCAM expression leads to activation of proinvasive extracellular matrix adhesion and signaling pathways. Profiling GlialCAM-regulated genes combined with cross-referencing to single-cell transcriptomic datasets validates functional links among GlialCAM, Mlc1, and aquaporin-4 in the invasive cell state. Collectively, these results reveal an important adhesion and signaling axis comprised of GlialCAM and associated proteins including Mlc1 and aquaporin-4 that is critical for control of GBM cell proliferation and invasion status in the brain cancer microenvironment.SIGNIFICANCE STATEMENT Glioblastoma (GBM) contains heterogeneous populations of cells that coordinately drive proliferation and invasion. We have discovered that glial cell adhesion molecule (GlialCAM)/hepatocyte cell adhesion molecule (HepaCAM) is highly expressed in proliferative GBM cells within the tumor core. In contrast, GBM cells with low levels of GlialCAM robustly invade into surrounding brain tissue along blood vessels and white matter. Quantitative RNA sequencing identifies various GlialCAM-regulated genes with functions in cell-cell adhesion and signaling. These data reveal that GlialCAM and associated signaling partners, including Mlc1 and aquaporin-4, are key factors that determine proliferative and invasive cell states in GBM.


Subject(s)
Aquaporins , Glioblastoma , Female , Humans , Male , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Cycle Proteins/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Membrane Proteins/metabolism , Tumor Microenvironment , Cell Proliferation , Neoplasm Invasiveness
2.
Oncogene ; 39(50): 7253-7264, 2020 12.
Article in English | MEDLINE | ID: mdl-33040087

ABSTRACT

Glioblastoma (GBM), or grade IV astrocytoma, is a malignant brain cancer that contains subpopulations of proliferative and invasive cells that coordinately drive primary tumor growth, progression, and recurrence after therapy. Here, we have analyzed functions for megalencephalic leukoencephalopathy with subcortical cysts 1 (Mlc1), an eight-transmembrane protein normally expressed in perivascular brain astrocyte end feet that is essential for neurovascular development and physiology, in the pathogenesis of GBM. We show that Mlc1 is expressed in human stem-like GBM cells (GSCs) and is linked to the development of primary and recurrent GBM. Genetically inhibiting MLC1 in GSCs using RNAi-mediated gene silencing results in diminished growth and invasion in vitro as well as impaired tumor initiation and progression in vivo. Biochemical assays identify the receptor tyrosine kinase Axl and its intracellular signaling effectors as important for MLC1 control of GSC invasive growth. Collectively, these data reveal key functions for MLC1 in promoting GSC growth and invasion, and suggest that targeting the Mlc1 protein or its associated signaling effectors may be a useful therapy for blocking tumor progression in patients with primary or recurrent GBM.


Subject(s)
Brain Neoplasms/pathology , Brain/pathology , Glioblastoma/pathology , Membrane Proteins/metabolism , Tumor Microenvironment , Animals , Cell Line, Tumor , Cell Polarity , Cell Proliferation , Cell Transformation, Neoplastic , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Invasiveness , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Signal Transduction
3.
Clin Exp Metastasis ; 30(8): 969-76, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23793989

ABSTRACT

Uveal melanoma (UM) has a 30 % 5-year mortality rate, primarily due to liver metastasis. Both angiogenesis and stromagenesis are important mechanisms for the progression of liver metastasis. Pigment epithelium-derived factor (PEDF), an anti-angiogenic and anti-stromagenic protein, is produced by hepatocytes. Exogenous PEDF suppresses metastasis progression; however, the effects of host-produced PEDF on metastasis progression are unknown. We hypothesize that host PEDF inhibits liver metastasis progression through a mechanism involving angiogenesis and stromagenesis. Mouse melanoma cells were injected into the posterior ocular compartment of PEDF-null mice and control mice. After 1 month, the number, size, and mean vascular density (MVD) of liver metastases were determined. The stromal component of hepatic stellate cells (HSCs) and the type III collagen they produce was evaluated by immunohistochemistry. Host PEDF inhibited the total area of liver metastasis and the frequency of macrometastases (diameter >200 µm) but did not affect the total number of metastases. Mice expressing PEDF exhibited significantly lower MVD and less type III collagen production in metastases. An increase in activated HSCs was seen in the absence of PEDF, but this result was not statistically significant. In conclusion, host PEDF inhibits the progression of hepatic metastases in a mouse model of UM, and loss of PEDF is accompanied by an increase in tumor blood vessel density and type III collagen.


Subject(s)
Disease Models, Animal , Eye Proteins/physiology , Liver Neoplasms/prevention & control , Melanoma/prevention & control , Neovascularization, Pathologic/prevention & control , Nerve Growth Factors/physiology , Serpins/physiology , Skin Neoplasms/prevention & control , Uveal Neoplasms/prevention & control , Animals , Disease Progression , Humans , Immunoenzyme Techniques , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Stromal Cells/metabolism , Stromal Cells/pathology , Tumor Cells, Cultured , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL