Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Brain ; 147(6): 2069-2084, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38763511

ABSTRACT

The peroxisomal disease adrenoleukodystrophy (X-ALD) is caused by loss of the transporter of very-long-chain fatty acids (VLCFAs), ABCD1. An excess of VLCFAs disrupts essential homeostatic functions crucial for axonal maintenance, including redox metabolism, glycolysis and mitochondrial respiration. As mitochondrial function and morphology are intertwined, we set out to investigate the role of mitochondrial dynamics in X-ALD models. Using quantitative 3D transmission electron microscopy, we revealed mitochondrial fragmentation in corticospinal axons in Abcd1- mice. In patient fibroblasts, an excess of VLCFAs triggers mitochondrial fragmentation through the redox-dependent phosphorylation of DRP1 (DRP1S616). The blockade of DRP1-driven fission by the peptide P110 effectively preserved mitochondrial morphology. Furthermore, mRNA inhibition of DRP1 not only prevented mitochondrial fragmentation but also protected axonal health in a Caenorhabditis elegans model of X-ALD, underscoring DRP1 as a potential therapeutic target. Elevated levels of circulating cell-free mtDNA in patients' CSF align this leukodystrophy with primary mitochondrial disorders. Our findings underscore the intricate interplay between peroxisomal dysfunction, mitochondrial dynamics and axonal integrity in X-ALD, shedding light on potential avenues for therapeutic intervention.


Subject(s)
ATP Binding Cassette Transporter, Subfamily D, Member 1 , Adrenoleukodystrophy , Dynamins , Mitochondrial Dynamics , Adrenoleukodystrophy/metabolism , Adrenoleukodystrophy/pathology , Adrenoleukodystrophy/genetics , Animals , Mitochondrial Dynamics/physiology , Humans , Mice , Dynamins/metabolism , Dynamins/genetics , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Caenorhabditis elegans , Mitochondria/metabolism , Mitochondria/pathology , Axons/pathology , Axons/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Male , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Disease Models, Animal , Pyramidal Tracts/pathology , Pyramidal Tracts/metabolism , Peptide Fragments , GTP Phosphohydrolases
2.
Genome Med ; 15(1): 68, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679823

ABSTRACT

BACKGROUND: Whole-exome sequencing (WES) and whole-genome sequencing (WGS) have become indispensable tools to solve rare Mendelian genetic conditions. Nevertheless, there is still an urgent need for sensitive, fast algorithms to maximise WES/WGS diagnostic yield in rare disease patients. Most tools devoted to this aim take advantage of patient phenotype information for prioritization of genomic data, although are often limited by incomplete gene-phenotype knowledge stored in biomedical databases and a lack of proper benchmarking on real-world patient cohorts. METHODS: We developed ClinPrior, a novel method for the analysis of WES/WGS data that ranks candidate causal variants based on the patient's standardized phenotypic features (in Human Phenotype Ontology (HPO) terms). The algorithm propagates the data through an interactome network-based prioritization approach. This algorithm was thoroughly benchmarked using a synthetic patient cohort and was subsequently tested on a heterogeneous prospective, real-world series of 135 families affected by hereditary spastic paraplegia (HSP) and/or cerebellar ataxia (CA). RESULTS: ClinPrior successfully identified causative variants achieving a final positive diagnostic yield of 70% in our real-world cohort. This includes 10 novel candidate genes not previously associated with disease, 7 of which were functionally validated within this project. We used the knowledge generated by ClinPrior to create a specific interactome for HSP/CA disorders thus enabling future diagnoses as well as the discovery of novel disease genes. CONCLUSIONS: ClinPrior is an algorithm that uses standardized phenotype information and interactome data to improve clinical genomic diagnosis. It helps in identifying atypical cases and efficiently predicts novel disease-causing genes. This leads to increasing diagnostic yield, shortening of the diagnostic Odysseys and advancing our understanding of human illnesses.


Subject(s)
Algorithms , Genomics , Humans , Prospective Studies , Databases, Factual , Genetic Association Studies
3.
J Clin Invest ; 133(14)2023 07 17.
Article in English | MEDLINE | ID: mdl-37463447

ABSTRACT

The Rad50 interacting protein 1 (Rint1) is a key player in vesicular trafficking between the ER and Golgi apparatus. Biallelic variants in RINT1 cause infantile-onset episodic acute liver failure (ALF). Here, we describe 3 individuals from 2 unrelated families with novel biallelic RINT1 loss-of-function variants who presented with early onset spastic paraplegia, ataxia, optic nerve hypoplasia, and dysmorphic features, broadening the previously described phenotype. Our functional and lipidomic analyses provided evidence that pathogenic RINT1 variants induce defective lipid-droplet biogenesis and profound lipid abnormalities in fibroblasts and plasma that impact both neutral lipid and phospholipid metabolism, including decreased triglycerides and diglycerides, phosphatidylcholine/phosphatidylserine ratios, and inhibited Lands cycle. Further, RINT1 mutations induced intracellular ROS production and reduced ATP synthesis, affecting mitochondria with membrane depolarization, aberrant cristae ultrastructure, and increased fission. Altogether, our results highlighted the pivotal role of RINT1 in lipid metabolism and mitochondria function, with a profound effect in central nervous system development.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/metabolism , Lipid Metabolism , Mutation , Golgi Apparatus/metabolism , Lipids , Phenotype , Cell Cycle Proteins/metabolism
4.
J Clin Invest ; 133(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-36951944

ABSTRACT

Sphingolipids function as membrane constituents and signaling molecules, with crucial roles in human diseases, from neurodevelopmental disorders to cancer, best exemplified in the inborn errors of sphingolipid metabolism in lysosomes. The dihydroceramide desaturase Δ4-dihydroceramide desaturase 1 (DEGS1) acts in the last step of a sector of the sphingolipid pathway, de novo ceramide biosynthesis. Defects in DEGS1 cause the recently described hypomyelinating leukodystrophy-18 (HLD18) (OMIM #618404). Here, we reveal that DEGS1 is a mitochondria-associated endoplasmic reticulum membrane-resident (MAM-resident) enzyme, refining previous reports locating DEGS1 at the endoplasmic reticulum only. Using patient fibroblasts, multiomics, and enzymatic assays, we show that DEGS1 deficiency disrupts the main core functions of the MAM: (a) mitochondrial dynamics, with a hyperfused mitochondrial network associated with decreased activation of dynamin-related protein 1; (b) cholesterol metabolism, with impaired sterol O-acyltransferase activity and decreased cholesteryl esters; (c) phospholipid metabolism, with increased phosphatidic acid and phosphatidylserine and decreased phosphatidylethanolamine; and (d) biogenesis of lipid droplets, with increased size and numbers. Moreover, we detected increased mitochondrial superoxide species production in fibroblasts and mitochondrial respiration impairment in patient muscle biopsy tissues. Our findings shed light on the pathophysiology of HLD18 and broaden our understanding of the role of sphingolipid metabolism in MAM function.


Subject(s)
Oxidoreductases , Sphingolipids , Humans , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Oxidoreductases/metabolism , Sphingolipids/metabolism
5.
J Med Genet ; 59(12): 1227-1233, 2022 12.
Article in English | MEDLINE | ID: mdl-36041817

ABSTRACT

BACKGROUND: Aminoacyl-tRNA synthetases (ARS) are key enzymes catalysing the first reactions in protein synthesis, with increasingly recognised pleiotropic roles in tumourgenesis, angiogenesis, immune response and lifespan. Germline mutations in several ARS genes have been associated with both recessive and dominant neurological diseases. Recently, patients affected with microcephaly, intellectual disability and ataxia harbouring biallelic variants in the seryl-tRNA synthetase encoded by seryl-tRNA synthetase 1 (SARS1) were reported. METHODS: We used exome sequencing to identify the causal variant in a patient affected by complex spastic paraplegia with ataxia, intellectual disability, developmental delay and seizures, but without microcephaly. Complementation and serylation assays using patient's fibroblasts and an Saccharomyces cerevisiae model were performed to examine this variant's pathogenicity. RESULTS: A de novo splice site deletion in SARS1 was identified in our patient, resulting in a 5-amino acid in-frame insertion near its active site. Complementation assays in S. cerevisiae and serylation assays in both yeast strains and patient fibroblasts proved a loss-of-function, dominant negative effect. Fibroblasts showed an abnormal cell shape, arrested division and increased beta-galactosidase staining along with a senescence-associated secretory phenotype (raised interleukin-6, p21, p16 and p53 levels). CONCLUSION: We refine the phenotypic spectrum and modes of inheritance of a newly described, ultrarare neurodevelopmental disorder, while unveiling the role of SARS1 as a regulator of cell growth, division and senescence.


Subject(s)
Amino Acyl-tRNA Synthetases , Intellectual Disability , Microcephaly , Serine-tRNA Ligase , Humans , Amino Acyl-tRNA Synthetases/genetics , Ataxia , Cellular Senescence/genetics , Intellectual Disability/genetics , Ligases , Microcephaly/genetics , Paraplegia/genetics , Saccharomyces cerevisiae/genetics , Serine-tRNA Ligase/chemistry , Serine-tRNA Ligase/metabolism
6.
Front Microbiol ; 13: 761873, 2022.
Article in English | MEDLINE | ID: mdl-35464955

ABSTRACT

Bacteriological diagnosis is traditionally based on culture. However, this method may be limited by the difficulty of cultivating certain species or by prior exposure to antibiotics, which justifies the resort to molecular methods, such as Sanger sequencing of the 16S rRNA gene (Sanger 16S). Recently, shotgun metagenomics (SMg) has emerged as a powerful tool to identify a wide range of pathogenic microorganisms in numerous clinical contexts. In this study, we compared the performance of SMg to Sanger 16S for bacterial detection and identification. All patients' samples for which Sanger 16S was requested between November 2019 and April 2020 in our institution were prospectively included. The corresponding samples were tested with a commercial 16S semi-automated method and a semi-quantitative pan-microorganism DNA- and RNA-based SMg method. Sixty-seven samples from 64 patients were analyzed. Overall, SMg was able to identify a bacterial etiology in 46.3% of cases (31/67) vs. 38.8% (26/67) with Sanger 16S. This difference reached significance when only the results obtained at the species level were compared (28/67 vs. 13/67). This study provides one of the first evidence of a significantly better performance of SMg than Sanger 16S for bacterial detection at the species level in patients with infectious diseases for whom culture-based methods have failed. This technology has the potential to replace Sanger 16S in routine practice for infectious disease diagnosis.

7.
Brain Pathol ; 30(5): 945-963, 2020 09.
Article in English | MEDLINE | ID: mdl-32511826

ABSTRACT

Biotin is an essential cofactor for carboxylases that regulates the energy metabolism. Recently, high-dose pharmaceutical-grade biotin (MD1003) was shown to improve clinical parameters in a subset of patients with chronic progressive multiple sclerosis. To gain insight into the mechanisms of action, we investigated the efficacy of high-dose biotin in a genetic model of chronic axonopathy caused by oxidative damage and bioenergetic failure, the Abcd1- mouse model of adrenomyeloneuropathy. High-dose biotin restored redox homeostasis driven by NRF-2, mitochondria biogenesis and ATP levels, and reversed axonal demise and locomotor impairment. Moreover, we uncovered a concerted dysregulation of the transcriptional program for lipid synthesis and degradation in the spinal cord likely driven by aberrant SREBP-1c/mTORC1signaling. This resulted in increased triglyceride levels and lipid droplets in motor neurons. High-dose biotin normalized the hyperactivation of mTORC1, thus restoring lipid homeostasis. These results shed light into the mechanism of action of high-dose biotin of relevance for neurodegenerative and metabolic disorders.


Subject(s)
Adrenoleukodystrophy/therapy , Biotin/pharmacology , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily D, Member 1/metabolism , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/metabolism , Animals , Axons/metabolism , Biotin/metabolism , Cell Line , Disease Models, Animal , Energy Metabolism , Homeostasis , Humans , Lipids , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction/drug effects , Oxidative Stress/physiology , Sterol Regulatory Element Binding Protein 1/metabolism
8.
Hum Mutat ; 41(3): 632-640, 2020 03.
Article in English | MEDLINE | ID: mdl-31696996

ABSTRACT

Hereditary spastic paraplegia (HSP) is a group of disorders with predominant symptoms of lower-extremity weakness and spasticity. Despite the delineation of numerous genetic causes of HSP, a significant portion of individuals with HSP remain molecularly undiagnosed. Through exome sequencing, we identified five unrelated families with childhood-onset nonsyndromic HSP, all presenting with progressive spastic gait, leg clonus, and toe walking starting from 7 to 8 years old. A recurrent two-base pair deletion (c.426_427delGA, p.K143Sfs*15) in the UBAP1 gene was found in four families, and a similar variant (c.475_476delTT, p.F159*) was detected in a fifth family. The variant was confirmed to be de novo in two families and inherited from an affected parent in two other families. RNA studies performed in lymphocytes from one patient with the de novo c.426_427delGA variant demonstrated escape of nonsense-mediated decay of the UBAP1 mutant transcript, suggesting the generation of a truncated protein. Both variants identified in this study are predicted to result in truncated proteins losing the capacity of binding to ubiquitinated proteins, hence appearing to exhibit a dominant-negative effect on the normal function of the endosome-specific endosomal sorting complexes required for the transport-I complex.


Subject(s)
Carrier Proteins/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics , Age of Onset , Child , Female , Genetic Association Studies/methods , Genetic Loci , Humans , Lymphocytes/immunology , Lymphocytes/metabolism , Male , Pedigree , Phenotype , Exome Sequencing
9.
J Med Genet ; 56(12): 846-849, 2019 12.
Article in English | MEDLINE | ID: mdl-31004048

ABSTRACT

BACKGROUND: Alexander disease, an autosomal dominant leukodystrophy, is caused by missense mutations in GFAP. Although mostly diagnosed in children, associated with severe leukoencephalopathy, milder adult forms also exist. METHODS: A family affected by adult-onset spastic paraplegia underwent neurological examination and cerebral MRI. Two patients were sequenced by whole exome sequencing (WES). A candidate variant was functionally tested in an astrocytoma cell line. RESULTS: The novel variant in GFAP (Glial Fibrillary Acidic Protein) N-terminal head domain (p.Gly18Val) cosegregated in multiple relatives (LOD score: 2.7). All patients, even those with the mildest forms, showed characteristic signal changes or atrophy in the brainstem and spinal cord MRIs, and abnormal MRS. In vitro, this variant did not cause significant protein aggregation, in contrast to most Alexander disease mutations characterised so far. However, cell area analysis showed larger size, a feature previously described in patients and mouse models. CONCLUSION: We suggest that this variant causes variable expressivity and an attenuated phenotype of Alexander disease type II, probably associated with alternative pathogenic mechanisms, that is, astrocyte enlargement. GFAP analysis should be considered in adult-onset neurological presentations with pyramidal and bulbar symptoms, in particular when characteristic findings, such as the tadpole sign, are present in MRI. WES is a powerful tool to diagnose atypical cases.


Subject(s)
Alexander Disease/diagnosis , Alexander Disease/genetics , Glial Fibrillary Acidic Protein/genetics , Adolescent , Adult , Aged , Alexander Disease/diagnostic imaging , Alexander Disease/pathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Mutation/genetics , Pedigree , Phenotype , Exome Sequencing , Young Adult
10.
J Clin Invest ; 129(3): 1240-1256, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30620337

ABSTRACT

Sphingolipid imbalance is the culprit in a variety of neurological diseases, some affecting the myelin sheath. We have used whole-exome sequencing in patients with undetermined leukoencephalopathies to uncover the endoplasmic reticulum lipid desaturase DEGS1 as the causative gene in 19 patients from 13 unrelated families. Shared features among the cases include severe motor arrest, early nystagmus, dystonia, spasticity, and profound failure to thrive. MRI showed hypomyelination, thinning of the corpus callosum, and progressive thalamic and cerebellar atrophy, suggesting a critical role of DEGS1 in myelin development and maintenance. This enzyme converts dihydroceramide (DhCer) into ceramide (Cer) in the final step of the de novo biosynthesis pathway. We detected a marked increase of the substrate DhCer and DhCer/Cer ratios in patients' fibroblasts and muscle. Further, we used a knockdown approach for disease modeling in Danio rerio, followed by a preclinical test with the first-line treatment for multiple sclerosis, fingolimod (FTY720, Gilenya). The enzymatic inhibition of Cer synthase by fingolimod, 1 step prior to DEGS1 in the pathway, reduced the critical DhCer/Cer imbalance and the severe locomotor disability, increasing the number of myelinating oligodendrocytes in a zebrafish model. These proof-of-concept results pave the way to clinical translation.


Subject(s)
Animals, Genetically Modified , Brain , Fingolimod Hydrochloride/pharmacology , Hereditary Central Nervous System Demyelinating Diseases , Zebrafish Proteins , Zebrafish , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Brain/enzymology , Brain/pathology , Disease Models, Animal , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Hereditary Central Nervous System Demyelinating Diseases/drug therapy , Hereditary Central Nervous System Demyelinating Diseases/enzymology , Hereditary Central Nervous System Demyelinating Diseases/genetics , Hereditary Central Nervous System Demyelinating Diseases/pathology , Humans , Locomotion/drug effects , Oligodendroglia/enzymology , Oligodendroglia/pathology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics
11.
EMBO Mol Med ; 10(8)2018 08.
Article in English | MEDLINE | ID: mdl-29997171

ABSTRACT

The nuclear factor erythroid 2-like 2 (NRF2) is the master regulator of endogenous antioxidant responses. Oxidative damage is a shared and early-appearing feature in X-linked adrenoleukodystrophy (X-ALD) patients and the mouse model (Abcd1 null mouse). This rare neurometabolic disease is caused by the loss of function of the peroxisomal transporter ABCD1, leading to an accumulation of very long-chain fatty acids and the induction of reactive oxygen species of mitochondrial origin. Here, we identify an impaired NRF2 response caused by aberrant activity of GSK-3ß. We find that GSK-3ß inhibitors can significantly reactivate the blunted NRF2 response in patients' fibroblasts. In the mouse models (Abcd1- and Abcd1-/Abcd2-/- mice), oral administration of dimethyl fumarate (DMF/BG12/Tecfidera), an NRF2 activator in use for multiple sclerosis, normalized (i) mitochondrial depletion, (ii) bioenergetic failure, (iii) oxidative damage, and (iv) inflammation, highlighting an intricate cross-talk governing energetic and redox homeostasis in X-ALD Importantly, DMF halted axonal degeneration and locomotor disability suggesting that therapies activating NRF2 hold therapeutic potential for X-ALD and other axonopathies with impaired GSK-3ß/NRF2 axis.


Subject(s)
Adrenoleukodystrophy/drug therapy , Antioxidants/therapeutic use , Dimethyl Fumarate/therapeutic use , Glycogen Synthase Kinase 3 beta/metabolism , NF-E2-Related Factor 2/metabolism , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Adrenoleukodystrophy/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Dimethyl Fumarate/administration & dosage , Disease Models, Animal , Gliosis/drug therapy , Humans , Male , Mice , Mice, Knockout , Organelle Biogenesis , Oxidative Stress/physiology , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism
12.
Brain Pathol ; 28(5): 611-630, 2018 09.
Article in English | MEDLINE | ID: mdl-29027761

ABSTRACT

Pelizaeus-Merzbacher disease (PMD) is a fatal hypomyelinating disorder characterized by early impairment of motor development, nystagmus, choreoathetotic movements, ataxia and progressive spasticity. PMD is caused by variations in the proteolipid protein gene PLP1, which encodes the two major myelin proteins of the central nervous system, PLP and its spliced isoform DM20, in oligodendrocytes. Large duplications including the entire PLP1 gene are the most frequent causative mutation leading to the classical form of PMD. The Plp1 overexpressing mouse model (PLP-tg66/66 ) develops a phenotype very similar to human PMD, with early and severe motor dysfunction and a dramatic decrease in lifespan. The sequence of cellular events that cause neurodegeneration and ultimately death is poorly understood. In this work, we analyzed patient-derived fibroblasts and spinal cords of the PLP-tg66/66 mouse model, and identified redox imbalance, with altered antioxidant defense and oxidative damage to several enzymes involved in ATP production, such as glycolytic enzymes, creatine kinase and mitochondrial proteins from the Krebs cycle and oxidative phosphorylation. We also evidenced malfunction of the mitochondria compartment with increased ROS production and depolarization in PMD patient's fibroblasts, which was prevented by the antioxidant N-acetyl-cysteine. Finally, we uncovered an impairment of mitochondrial dynamics in patient's fibroblasts which may help explain the ultrastructural abnormalities of mitochondria morphology detected in spinal cords from PLP-tg66/66 mice. Altogether, these results underscore the link between redox and metabolic homeostasis in myelin diseases, provide insight into the pathophysiology of PMD, and may bear implications for tailored pharmacological intervention.


Subject(s)
Mitochondrial Dynamics , Oxidative Stress , Pelizaeus-Merzbacher Disease/metabolism , Animals , Cells, Cultured , Child , Child, Preschool , DNA, Mitochondrial , Fibroblasts/metabolism , Fibroblasts/pathology , Glutamic Acid/metabolism , Humans , Infant , Male , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Myelin Proteolipid Protein/genetics , Myelin Proteolipid Protein/metabolism , Pelizaeus-Merzbacher Disease/pathology , RNA, Messenger/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology
13.
Acta Neuropathol ; 133(2): 283-301, 2017 02.
Article in English | MEDLINE | ID: mdl-28004277

ABSTRACT

The activation of the highly conserved unfolded protein response (UPR) is prominent in the pathogenesis of the most prevalent neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), which are classically characterized by an accumulation of aggregated or misfolded proteins. This activation is orchestrated by three endoplasmic reticulum (ER) stress sensors: PERK, ATF6 and IRE1. These sensors transduce signals that induce the expression of the UPR gene programme. Here, we first identified an early activator of the UPR and investigated the role of a chronically activated UPR in the pathogenesis of X-linked adrenoleukodystrophy (X-ALD), a neurometabolic disorder that is caused by ABCD1 malfunction; ABCD1 transports very long-chain fatty acids (VLCFA) into peroxisomes. The disease manifests as inflammatory demyelination in the brain or and/or degeneration of corticospinal tracts, thereby resulting in spastic paraplegia, with the accumulation of intracellular VLCFA instead of protein aggregates. Using X-ALD mouse model (Abcd1 - and Abcd1 - /Abcd2 -/- mice) and X-ALD patient's fibroblasts and brain samples, we discovered an early engagement of the UPR. The response was characterized by the activation of the PERK and ATF6 pathways, but not the IRE1 pathway, showing a difference from the models of AD, PD or ALS. Inhibition of PERK leads to the disruption of homeostasis and increased apoptosis during ER stress induced in X-ALD fibroblasts. Redox imbalance appears to be the mechanism that initiates ER stress in X-ALD. Most importantly, we demonstrated that the bile acid tauroursodeoxycholate (TUDCA) abolishes UPR activation, which results in improvement of axonal degeneration and its associated locomotor impairment in Abcd1 - /Abcd2 -/- mice. Altogether, our preclinical data provide evidence for establishing the UPR as a key drug target in the pathogenesis cascade. Our study also highlights the potential role of TUDCA as a treatment for X-ALD and other axonopathies in which similar molecular mediators are implicated.


Subject(s)
Adrenoleukodystrophy/physiopathology , Axons/drug effects , Nerve Degeneration/physiopathology , Taurochenodeoxycholic Acid/pharmacology , Unfolded Protein Response/physiology , Animals , Axons/pathology , Humans , Mice , Mice, Knockout
14.
Neuroradiology ; 58(9): 929-35, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27278377

ABSTRACT

INTRODUCTION: The study aims to assess the influence of neck extension on water diffusivity within the cervical spinal cord. METHODS: IRB approved the study in 22 healthy volunteers. All subjects underwent anatomical MR and diffusion tensor imaging (DTI) at 1.5 T. The cervical cord was imaged in neutral (standard) position and extension. Segmental vertebral rotations were analyzed on sagittal T2-weighted images using the SpineView® software. Spinal cord diffusivity was measured in cross-sectional regions of interests at multiple levels (C1-C5). RESULTS: As a result of non-adapted coil geometry for spinal extension, 10 subjects had to be excluded. Image quality of the remaining 12 subjects was good without any deteriorating artifacts. Quantitative measurements of vertebral rotation angles and diffusion parameters showed good intra-rater reliability (ICC = 0.84-0.99). DTI during neck extension revealed significantly decreased fractional anisotropy (FA) and increased radial diffusivity (RD) at the C3 level and increased apparent diffusion coefficients (ADC) at the C3 and C4 levels (p < 0.01 Bonferroni corrected). The C3/C4 level corresponded to the maximal absolute change in segmental vertebral rotation between the two positions. The increase in RD correlated positively with the degree of global extension, i.e., the summed vertebral rotation angle between C1 and C5 (R = 0.77, p = 0.006). CONCLUSION: Our preliminary results suggest that DTI can quantify changes in water diffusivity during cervical spine extension. The maximal differences in segmental vertebral rotation corresponded to the levels with significant changes in diffusivity (C3/C4). Consequently, kinetic DTI measurements may open new perspectives in the assessment of neural tissue under biomechanical constraints.


Subject(s)
Body Water/chemistry , Cervical Cord/chemistry , Cervical Cord/diagnostic imaging , Cervical Vertebrae/diagnostic imaging , Diffusion Tensor Imaging/methods , Image Interpretation, Computer-Assisted/methods , Range of Motion, Articular/physiology , Adult , Cervical Vertebrae/chemistry , Diffusion , Female , Humans , Kinetics , Male , Middle Aged , Pilot Projects , Reference Values , Reproducibility of Results , Sensitivity and Specificity
15.
Int J Endocrinol ; 2015: 213875, 2015.
Article in English | MEDLINE | ID: mdl-25722719

ABSTRACT

The purpose of this paper was to study the value of 18-FDG PET/CT and reassess the value of CT for the characterization of indeterminate adrenal masses. 66 patients with 67 indeterminate adrenal masses were included in our study. CT/MRI images and 18F-FDG PET/CT data were evaluated blindly for tumor morphology, enhancement features, apparent diffusion coefficient values, maximum standardized uptake values, and adrenal-to-liver maxSUV ratio. The study population comprised pathologically confirmed 16 adenomas, 19 metastases, and 32 adrenocortical carcinomas. Macroscopic fat was observed in 62.5% of the atypical adenomas at CT but not in malignant masses. On 18F-FDG PET/CT, SUVmax and adrenal-to-liver maxSUV ratio were significantly lower in adenomas than in malignant tumors. An SUVmax value of less than 3.7 or an adrenal-to-liver maxSUV ratio of less than 1.29 is highly predictive of benignity.

16.
Acta Neuropathol ; 129(3): 399-415, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25549970

ABSTRACT

X-linked adrenoleukodystrophy (X-ALD) is a rare neurometabolic disease characterized by the accumulation of very long chain fatty acids (VLCFAs) due to a loss of function of the peroxisomal transporter ABCD1. Here, using in vivo and in vitro models, we demonstrate that autophagic flux was impaired due to elevated mammalian target of rapamycin (mTOR) signaling, which contributed to X-ALD pathogenesis. We also show that excess VLCFAs downregulated autophagy in human fibroblasts. Furthermore, mTOR inhibition by a rapamycin derivative (temsirolimus) restored autophagic flux and inhibited the axonal degenerative process as well as the associated locomotor impairment in the Abcd1 (-) /Abcd2 (-/-) mouse model. This process was mediated through the restoration of proteasome function and redox as well as metabolic homeostasis. These findings provide the first evidence that links impaired autophagy to X-ALD, which may yield a therapy based on autophagy activators for adrenomyeloneuropathy patients.


Subject(s)
Adrenoleukodystrophy/pathology , Adrenoleukodystrophy/physiopathology , Autophagy/physiology , Nerve Degeneration/physiopathology , Adult , Animals , Blotting, Western , Cells, Cultured , Disease Models, Animal , Female , Humans , Immunohistochemistry , Male , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Middle Aged , Nerve Degeneration/pathology , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism
17.
Hum Mol Genet ; 23(14): 3716-32, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24556215

ABSTRACT

Methylene blue (MB, methylthioninium chloride) is a phenothiazine that crosses the blood brain barrier and acts as a redox cycler. Among its beneficial properties are its abilities to act as an antioxidant, to reduce tau protein aggregation and to improve energy metabolism. These actions are of particular interest for the treatment of neurodegenerative diseases with tau protein aggregates known as tauopathies. The present study examined the effects of MB in the P301S mouse model of tauopathy. Both 4 mg/kg MB (low dose) and 40 mg/kg MB (high dose) were administered in the diet ad libitum from 1 to 10 months of age. We assessed behavior, tau pathology, oxidative damage, inflammation and numbers of mitochondria. MB improved the behavioral abnormalities and reduced tau pathology, inflammation and oxidative damage in the P301S mice. These beneficial effects were associated with increased expression of genes regulated by NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE), which play an important role in antioxidant defenses, preventing protein aggregation, and reducing inflammation. The activation of Nrf2/ARE genes is neuroprotective in other transgenic mouse models of neurodegenerative diseases and it appears to be an important mediator of the neuroprotective effects of MB in P301S mice. Moreover, we used Nrf2 knock out fibroblasts to show that the upregulation of Nrf2/ARE genes by MB is Nrf2 dependent and not due to secondary effects of the compound. These findings provide further evidence that MB has important neuroprotective effects that may be beneficial in the treatment of human neurodegenerative diseases with tau pathology.


Subject(s)
Methylene Blue/pharmacology , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/administration & dosage , Tauopathies/drug therapy , tau Proteins/genetics , tau Proteins/metabolism , Animals , Behavior, Animal/drug effects , Cell Line , Female , Gene Expression Regulation/drug effects , Humans , Methylene Blue/administration & dosage , Mice , Mice, Transgenic , Mitochondria/metabolism , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Sex Factors , Signal Transduction/drug effects , Tauopathies/pathology
18.
FASEB J ; 28(4): 1745-55, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24398293

ABSTRACT

The peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) interacts with various transcription factors involved in energy metabolism and in the regulation of mitochondrial biogenesis. PGC-1α mRNA levels are reduced in a number of neurodegenerative diseases and contribute to disease pathogenesis, since increased levels ameliorate behavioral defects and neuropathology of Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. PGC-1α and its downstream targets are reduced both in postmortem brain tissue of patients with Alzheimer's disease (AD) and in transgenic mouse models of AD. Therefore, we investigated whether increased expression of PGC-1α would exert beneficial effects in the Tg19959 transgenic mouse model of AD; Tg19959 mice express the human amyloid precursor gene (APP) with 2 familial AD mutations and develop increased ß-amyloid levels, plaque deposition, and memory deficits by 2-3 mo of age. Rather than an improvement, the cross of the Tg19959 mice with mice overexpressing human PGC-1α exacerbated amyloid and tau accumulation. This was accompanied by an impairment of proteasome activity. PGC-1α overexpression induced mitochondrial abnormalities, neuronal cell death, and an exacerbation of behavioral hyperactivity in the Tg19959 mice. These findings show that PGC-1α overexpression exacerbates the neuropathological and behavioral deficits that occur in transgenic mice with mutations in APP that are associated with human AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Transcription Factors/metabolism , tau Proteins/metabolism , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Blotting, Western , Cell Death/genetics , Cell Death/physiology , Disease Models, Animal , Gene Expression , Humans , Memory Disorders/genetics , Memory Disorders/metabolism , Memory Disorders/physiopathology , Mental Disorders/genetics , Mental Disorders/metabolism , Mental Disorders/physiopathology , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Transgenic , Mutation , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Plaque, Amyloid/metabolism , Proteasome Endopeptidase Complex/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics
19.
Brain ; 136(Pt 3): 891-904, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23436506

ABSTRACT

Oxidative damage is a pivotal aetiopathogenic factor in X-linked adrenoleukodystrophy. This is a neurometabolic disease characterized by the accumulation of very-long-chain fatty acids owing to the loss of function of the peroxisomal transporter Abcd1. Here, we used the X-linked adrenoleukodystrophy mouse model and patient's fibroblasts to detect malfunctioning of the ubiquitin-proteasome system resulting from the accumulation of oxidatively modified proteins, some involved in bioenergetic metabolism. Furthermore, the immunoproteasome machinery appears upregulated in response to oxidative stress, in the absence of overt inflammation. i-Proteasomes are recruited to mitochondria when fibroblasts are exposed to an excess of very-long-chain fatty acids in response to oxidative stress. Antioxidant treatment regulates proteasome expression, prevents i-proteasome induction and translocation of i-proteasomes to mitochondria. Our findings support a key role of i-proteasomes in quality control in mitochondria during oxidative damage in X-linked adrenoleukodystrophy, and perhaps in other neurodegenerative conditions with similar pathogeneses.


Subject(s)
Adrenoleukodystrophy/metabolism , Oxidative Stress/physiology , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Adrenoleukodystrophy/immunology , Adrenoleukodystrophy/physiopathology , Animals , Disease Models, Animal , Fibroblasts/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Proteasome Endopeptidase Complex/immunology , Reverse Transcriptase Polymerase Chain Reaction , Ubiquitin/immunology
20.
Biochim Biophys Acta ; 1822(9): 1475-88, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22353463

ABSTRACT

X-linked adrenoleukodystrophy (X-ALD) is an inherited neurodegenerative disorder expressed as four disease variants characterized by adrenal insufficiency and graded damage in the nervous system. X-ALD is caused by a loss of function of the peroxisomal ABCD1 fatty-acid transporter, resulting in the accumulation of very long chain fatty acids (VLCFA) in the organs and plasma, which have potentially toxic effects in CNS and adrenal glands. We have recently shown that treatment with a combination of antioxidants containing α-tocopherol, N-acetyl-cysteine and α-lipoic acid reversed oxidative damage and energetic failure, together with the axonal degeneration and locomotor impairment displayed by Abcd1 null mice, the animal model of X-ALD. This is the first direct demonstration that oxidative stress, which is a hallmark not only of X-ALD, but also of other neurodegenerative processes, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), contributes to axonal damage. The purpose of this review is, first, to discuss the molecular and cellular underpinnings of VLCFA-induced oxidative stress, and how it interacts with energy metabolism and/or inflammation to generate a complex syndrome wherein multiple factors are contributing. Particular attention will be paid to the dysregulation of redox homeostasis by the interplay between peroxisomes and mitochondria. Second, we will extend this analysis to the aforementioned neurodegenerative diseases with the aim of defining differences as well as the existence of a core pathogenic mechanism that would justify the exchange of therapeutic opportunities among these pathologies.


Subject(s)
Adrenoleukodystrophy/metabolism , Axons/metabolism , Neurodegenerative Diseases/metabolism , Oxidative Stress , Adrenoleukodystrophy/drug therapy , Adrenoleukodystrophy/pathology , Animals , Antioxidants/therapeutic use , Axons/pathology , Cell Membrane/metabolism , Humans , Inflammation/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/pathology , Peroxisomes/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...