Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Eur J Hum Genet ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333429

ABSTRACT

Establishing a molecular diagnosis remains challenging in half of individuals with childhood-onset neuromuscular diseases (NMDs) despite exome sequencing. This study evaluates the diagnostic utility of combining genomic approaches in undiagnosed NMD patients. We performed deep phenotyping of 58 individuals with unsolved childhood-onset NMDs that have previously undergone inconclusive exome studies. Genomic approaches included trio genome sequencing and RNASeq. Genetic diagnoses were reached in 23 out of 58 individuals (40%). Twenty-one individuals carried causal single nucleotide variants (SNVs) or small insertions and deletions, while 2 carried pathogenic structural variants (SVs). Genomic sequencing identified pathogenic variants in coding regions or at the splice site in 17 out of 21 resolved cases, while RNA sequencing was additionally required for the diagnosis of 4 cases. Reasons for previous diagnostic failures included low coverage in exonic regions harboring the second pathogenic variant and involvement of genes that were not yet linked to human diseases at the time of the first NGS analysis. In summary, our systematic genetic analysis, integrating deep phenotyping, trio genome sequencing and RNASeq, proved effective in diagnosing unsolved childhood-onset NMDs. This approach holds promise for similar cohorts, offering potential improvements in diagnostic rates and clinical management of individuals with NMDs.

2.
Article in English | MEDLINE | ID: mdl-39262341

ABSTRACT

Long-duration spaceflight is associated with pathophysiological changes in the intracranial compartment hypothetically linked to microgravity-induced headward fluid shift. This study aimed to determine if daily artificial gravity (AG) sessions can mitigate these effects, supporting its application as a countermeasure to spaceflight. Twenty-four healthy adult volunteers (16 men) were exposed to 60 days of six-degree head-down tilt bed rest (HDTBR) as a ground-based analog of chronic headward fluid shift. Subjects were divided equally into three groups: No AG (control), daily 30-minute intermittent AG (iAG), and daily 30-minute continuous (cAG). Internal carotid artery (ICA) stroke volume (ICASV), ICA resistive index (ICARI), ICA flow rate (ICAFR), aqueductal cerebral spinal fluid flow velocity (CSFV), and intracranial volumetrics were quantified at 3T. MRI was performed at baseline, 14 and 52 days into HDTBR, and three days after HDTBR(recovery). A mixed model approach was used with intervention and time as the fixed effect factors and the subject as the random effect factor. Compared to baseline, HDTBR was characterized by expansion of lateral ventricular, white matter, gray matter, and brain + total intracranial cerebral spinal fluid volumes, increased CSFv, decreased ICASV, and decreased ICAFR by 52 days into HBTBR (All Ps <0.05). ICARI was only increased 14 days into HDTBR (P <0.05). Neither iAG nor cAG significantly affected measurements compared to HDTBR alone, indicating that thirty minutes of daily exposure was insufficient to mitigate the intracranial effects of headward fluid shift. Greater AG session exposure time, gravitational force or both are suggested for future countermeasure research.

3.
JAMA Ophthalmol ; 142(9): 808-817, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39052244

ABSTRACT

Importance: Understanding potential predisposing factors associated with spaceflight-associated neuro-ocular syndrome (SANS) may influence its management. Objective: To describe a severe case of SANS associated with 2 potentially predisposing factors. Design, Setting, and Participants: Ocular testing of and blood collections from a female astronaut were completed preflight, inflight, and postflight in the setting of the International Space Station (ISS). Exposure: Weightlessness throughout an approximately 6-month ISS mission. Mean carbon dioxide (CO2) partial pressure decreased from 2.6 to 1.3 mm Hg weeks before the astronaut's flight day (FD) 154 optical coherence tomography (OCT) session. In response to SANS, 4 B-vitamin supplements (vitamin B6, 100 mg; L-methylfolate, 5 mg; vitamin B12, 1000 µg; and riboflavin, 400 mg) were deployed, unpacked on FD153, consumed daily through FD169, and then discontinued due to gastrointestinal discomfort. Main Outcomes and Measures: Refraction, distance visual acuity (DVA), optic nerve, and macular assessment on OCT. Results: Cycloplegic refraction was -1.00 diopter in both eyes preflight and +0.50 - 0.25 × 015 in the right eye and +1.00 diopter in the left eye 3 days postflight. Uncorrected DVA was 20/30 OU preflight, 20/16 or better by FD90, and 20/15 OU 3 days postflight. Inflight peripapillary total retinal thickness (TRT) peaked between FD84 and FD126 (right eye, 401 µm preflight, 613 µm on FD84; left eye, 404 µm preflight, 636 µm on FD126), then decreased. Peripapillary choroidal folds, quantified by surface roughness, peaked at 12.7 µm in the right eye on FD154 and 15.0 µm in the left eye on FD126, then decreased. Mean choroidal thickness increased throughout the mission. Genetic analyses revealed 2 minor alleles for MTRR 66 and 2 major alleles for SHMT1 1420 (ie, 4 of 4 SANS risk alleles). One-week postflight, lumbar puncture opening pressure was normal, at 19.4 cm H2O. Conclusions and Relevance: To the authors' knowledge, no other report of SANS documented as large of a change in peripapillary TRT or hyperopic shift during a mission as in this astronaut, and this was only 1 of 4 astronauts to experience chorioretinal folds approaching the fovea. This case showed substantial inflight improvement greater than the sensitivity of the measure, possibly associated with B-vitamin supplementation and/or reduction in cabin CO2. However, as a single report, such improvement could be coincidental to these interventions, warranting further evaluation.


Subject(s)
Astronauts , Space Flight , Tomography, Optical Coherence , Visual Acuity , Weightlessness , Humans , Female , Visual Acuity/physiology , Weightlessness/adverse effects , Middle Aged , Syndrome , Refraction, Ocular/physiology , Optic Nerve Diseases/diagnosis , Optic Nerve Diseases/physiopathology , Optic Nerve Diseases/etiology , Vitamin B 12/therapeutic use , Vision Disorders
4.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063034

ABSTRACT

Duchenne and Becker muscular dystrophies, caused by pathogenic variants in DMD, are the most common inherited neuromuscular conditions in childhood. These diseases follow an X-linked recessive inheritance pattern, and mainly males are affected. The most prevalent pathogenic variants in the DMD gene are copy number variants (CNVs), and most patients achieve their genetic diagnosis through Multiplex Ligation-dependent Probe Amplification (MLPA) or exome sequencing. Here, we investigated a female patient presenting with muscular dystrophy who remained genetically undiagnosed after MLPA and exome sequencing. RNA sequencing (RNAseq) from the patient's muscle biopsy identified an 85% reduction in DMD expression compared to 116 muscle samples included in the cohort. A de novo balanced translocation between chromosome 17 and the X chromosome (t(X;17)(p21.1;q23.2)) disrupting the DMD and BCAS3 genes was identified through trio whole genome sequencing (WGS). The combined analysis of RNAseq and WGS played a crucial role in the detection and characterisation of the disease-causing variant in this patient, who had been undiagnosed for over two decades. This case illustrates the diagnostic odyssey of female DMD patients with complex structural variants that are not detected by current panel or exome sequencing analysis.


Subject(s)
Chromosomes, Human, X , Dystrophin , Genomics , Muscular Dystrophy, Duchenne , Translocation, Genetic , Humans , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/diagnosis , Female , Dystrophin/genetics , Chromosomes, Human, X/genetics , Genomics/methods , DNA Copy Number Variations , Exome Sequencing , Transcriptome/genetics , Chromosomes, Human, Pair 17/genetics
5.
Pediatr Neurol ; 157: 5-13, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833907

ABSTRACT

BACKGROUND: Congenital myasthenic syndromes (CMS) are a group of inherited neuromuscular junction (NMJ) disorders arising from gene variants encoding diverse NMJ proteins. Recently, the VAMP1 gene, responsible for encoding the vesicle-associated membrane protein 1 (VAMP1), has been associated with CMS. METHODS: This study presents a characterization of five new individuals with VAMP1-related CMS, providing insights into the phenotype. RESULTS: The individuals with VAMP1-related CMS exhibited early disease onset, presenting symptoms prenatally or during the neonatal period, alongside severe respiratory involvement and feeding difficulties. Generalized weakness at birth was a common feature, and none of the individuals achieved independent walking ability. Notably, all cases exhibited scoliosis. The clinical course remained stable, without typical exacerbations seen in other CMS types. The response to anticholinesterase inhibitors and salbutamol was only partial, but the addition of 3,4-diaminopyridine (3,4-DAP) led to significant and substantial improvements, suggesting therapeutic benefits of 3,4-DAP for managing VAMP1-related CMS symptoms. Noteworthy is the identification of the VAMP1 (NM_014231.5): c.340delA; p.Ile114SerfsTer72 as a founder variant in the Iberian Peninsula and Latin America. CONCLUSIONS: This study contributes valuable insights into VAMP1-related CMS, emphasizing their early onset, arthrogryposis, facial and generalized weakness, respiratory involvement, and feeding difficulties. Furthermore, the potential efficacy of 3,4-DAP as a useful therapeutic option warrants further exploration. The findings have implications for clinical management and genetic counseling in affected individuals. Additional research is necessary to elucidate the long-term outcomes of VAMP1-related CMS.


Subject(s)
Amifampridine , Myasthenic Syndromes, Congenital , Phenotype , Vesicle-Associated Membrane Protein 1 , Humans , Myasthenic Syndromes, Congenital/drug therapy , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/physiopathology , Female , Male , Amifampridine/pharmacology , Vesicle-Associated Membrane Protein 1/genetics , Child , Adolescent , 4-Aminopyridine/analogs & derivatives , 4-Aminopyridine/pharmacology , 4-Aminopyridine/therapeutic use , Child, Preschool , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/therapeutic use , Infant
6.
J Neuromuscul Dis ; 11(4): 767-775, 2024.
Article in English | MEDLINE | ID: mdl-38759022

ABSTRACT

Background: The genetic diagnosis of mitochondrial disorders is complicated by its genetic and phenotypic complexity. Next generation sequencing techniques have much improved the diagnostic yield for these conditions. A cohort of individuals with multiple respiratory chain deficiencies, reported in the literature 10 years ago, had a diagnostic rate of 60% by whole exome sequencing (WES) but 40% remained undiagnosed. Objective: We aimed to identify a genetic diagnosis by reanalysis of the WES data for the undiagnosed arm of this 10-year-old cohort of patients with suspected mitochondrial disorders. Methods: The WES data was transferred and processed by the RD-Connect Genome-Phenome Analysis Platform (GPAP) using their standardized pipeline. Variant prioritisation was carried out on the RD-Connect GPAP. Results: Singleton WES data from 14 individuals was reanalysed. We identified a possible or likely genetic diagnosis in 8 patients (8/14, 57%). The variants identified were in a combination of mitochondrial DNA (n = 1, MT-TN), nuclear encoded mitochondrial genes (n = 2, PDHA1, and SUCLA2) and nuclear genes associated with nonmitochondrial disorders (n = 5, PNPLA2, CDC40, NBAS and SLC7A7). Variants in both the NBAS and CDC40 genes were established as disease causing after the original cohort was published. We increased the diagnostic yield for the original cohort by 15% without generating any further genomic data. Conclusions: In the era of multiomics we highlight that reanalysis of existing WES data is a valid tool for generating additional diagnosis in patients with suspected mitochondrial disease, particularly when more time has passed to allow for new bioinformatic pipelines to emerge, for the development of new tools in variant interpretation aiding in reclassification of variants and the expansion of scientific knowledge on additional genes.


Subject(s)
Exome Sequencing , Mitochondrial Diseases , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/diagnosis , Exome Sequencing/methods , Child , Male , Female , Cohort Studies , DNA, Mitochondrial/genetics
7.
Eur J Hum Genet ; 32(8): 998-1004, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38822122

ABSTRACT

Structural variants (SVs), including large deletions, duplications, inversions, translocations, and more complex events have the potential to disrupt gene function resulting in rare disease. Nevertheless, current pipelines and clinical decision support systems for exome sequencing (ES) tend to focus on small alterations such as single nucleotide variants (SNVs) and insertions-deletions shorter than 50 base pairs (indels). Additionally, detection and interpretation of large copy-number variants (CNVs) are frequently performed. However, detection of other types of SVs in ES data is hampered by the difficulty of identifying breakpoints in off-target (intergenic or intronic) regions, which makes robust identification of SVs challenging. In this paper, we demonstrate the utility of SV calling in ES resulting in a diagnostic yield of 0.4% (23 out of 5825 probands) for a large cohort of unsolved patients collected by the Solve-RD consortium. Remarkably, 8 out of 23 pathogenic SV were not found by comprehensive read-depth-based CNV analysis, resulting in a 0.13% increased diagnostic value.


Subject(s)
Rare Diseases , Humans , Rare Diseases/genetics , Rare Diseases/diagnosis , DNA Copy Number Variations , Exome/genetics , Exome Sequencing , Genetic Testing/methods , Genetic Testing/standards , Genomic Structural Variation
8.
medRxiv ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38746462

ABSTRACT

Solve-RD is a pan-European rare disease (RD) research program that aims to identify disease-causing genetic variants in previously undiagnosed RD families. We utilised 10-fold coverage HiFi long-read sequencing (LRS) for detecting causative structural variants (SVs), single nucleotide variants (SNVs), insertion-deletions (InDels), and short tandem repeat (STR) expansions in extensively studied RD families without clear molecular diagnoses. Our cohort includes 293 individuals from 114 genetically undiagnosed RD families selected by European Rare Disease Network (ERN) experts. Of these, 21 families were affected by so-called 'unsolvable' syndromes for which genetic causes remain unknown, and 93 families with at least one individual affected by a rare neurological, neuromuscular, or epilepsy disorder without genetic diagnosis despite extensive prior testing. Clinical interpretation and orthogonal validation of variants in known disease genes yielded thirteen novel genetic diagnoses due to de novo and rare inherited SNVs, InDels, SVs, and STR expansions. In an additional four families, we identified a candidate disease-causing SV affecting several genes including an MCF2 / FGF13 fusion and PSMA3 deletion. However, no common genetic cause was identified in any of the 'unsolvable' syndromes. Taken together, we found (likely) disease-causing genetic variants in 13.0% of previously unsolved families and additional candidate disease-causing SVs in another 4.3% of these families. In conclusion, our results demonstrate the added value of HiFi long-read genome sequencing in undiagnosed rare diseases.

10.
Neuromuscul Disord ; 39: 10-18, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669730

ABSTRACT

Recessive desminopathies are rare and often present as severe early-onset myopathy. Here we report a milder phenotype in three unrelated patients from southern India (2 M, 1F) aged 16, 21, and 22 years, who presented with childhood-onset, gradually progressive, fatigable limb-girdle weakness, ptosis, speech and swallowing difficulties, without cardiac involvement. Serum creatine kinase was elevated, and repetitive nerve stimulation showed decrement in all. Clinical improvement was noted with pyridostigmine and salbutamol in two patients. All three patients had a homozygous substitution in intron 5: DES(NM_001927.4):c.1023+5G>A, predicted to cause a donor splice site defect. Muscle biopsy with ultrastructural analysis suggested myopathy with myofibrillar disarray, and immunohistochemistry showed partial loss of desmin with some residual staining, while western blot analysis showed reduced desmin. RT-PCR of patient muscle RNA revealed two transcripts: a reduced normal desmin transcript and a larger abnormal transcript suggesting leaky splicing at the intron 5 donor site. Sequencing of the PCR products confirmed the inclusion of intron 5 in the longer transcript, predicted to cause a premature stop codon. Thus, we provide evidence for a leaky splice site causing partial loss of desmin associated with a unique phenotypic presentation of a milder form of desmin-related recessive myopathy overlapping with congenital myasthenic syndrome.


Subject(s)
Desmin , Humans , Male , Desmin/genetics , Desmin/metabolism , Female , Young Adult , Adolescent , Muscle, Skeletal/pathology , Muscle, Skeletal/ultrastructure , Muscle, Skeletal/metabolism , RNA Splice Sites/genetics , Synaptic Transmission , Phenotype , Mutation
11.
J Appl Physiol (1985) ; 136(5): 1105-1112, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38482574

ABSTRACT

During spaceflight, fluids shift headward, causing internal jugular vein (IJV) distension and altered hemodynamics, including stasis and retrograde flow, that may increase the risk of thrombosis. This study's purpose was to determine the effects of acute exposure to weightlessness (0-G) on IJV dimensions and flow dynamics. We used two-dimensional (2-D) ultrasound to measure IJV cross-sectional area (CSA) and Doppler ultrasound to characterize venous blood flow patterns in the right and left IJV in 13 healthy participants (6 females) while 1) seated and supine on the ground, 2) supine during 0-G parabolic flight, and 3) supine during level flight (at 1-G). On Earth, in 1-G, moving from seated to supine posture increased CSA in both left (+62 [95% CI: +42 to 81] mm2, P < 0.0001) and right (+86 [95% CI: +58 to 113] mm2, P < 0.00012) IJV. Entry into 0-G further increased IJV CSA in both left (+27 [95% CI: +5 to 48] mm2, P = 0.02) and right (+30 [95% CI: +0.3 to 61] mm2, P = 0.02) relative to supine in 1-G. We observed stagnant flow in the left IJV of one participant during 0-G parabolic flight that remained during level flight but was not present during any imaging during preflight measures in the seated or supine postures; normal venous flow patterns were observed in the right IJV during all conditions in all participants. Alterations to cerebral outflow dynamics in the left IJV can occur during acute exposure to weightlessness and thus, may increase the risk of venous thrombosis during any duration of spaceflight.NEW & NOTEWORTHY The absence of hydrostatic pressure gradients in the vascular system and loss of tissue weight during weightlessness results in altered flow dynamics in the left internal jugular vein in some astronauts that may contribute to an increased risk of thromboembolism during spaceflight. Here, we report that the internal jugular veins distend bilaterally in healthy participants and that flow stasis can occur in the left internal jugular vein during acute weightlessness produced by parabolic flight.


Subject(s)
Jugular Veins , Weightlessness , Humans , Female , Jugular Veins/physiology , Jugular Veins/diagnostic imaging , Male , Adult , Weightlessness/adverse effects , Space Flight/methods , Hemodynamics/physiology , Blood Flow Velocity/physiology , Supine Position/physiology , Young Adult
12.
Nat Commun ; 15(1): 1227, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418480

ABSTRACT

Exploring the molecular basis of disease severity in rare disease scenarios is a challenging task provided the limitations on data availability. Causative genes have been described for Congenital Myasthenic Syndromes (CMS), a group of diverse minority neuromuscular junction (NMJ) disorders; yet a molecular explanation for the phenotypic severity differences remains unclear. Here, we present a workflow to explore the functional relationships between CMS causal genes and altered genes from each patient, based on multilayer network community detection analysis of complementary biomedical information provided by relevant data sources, namely protein-protein interactions, pathways and metabolomics. Our results show that CMS severity can be ascribed to the personalized impairment of extracellular matrix components and postsynaptic modulators of acetylcholine receptor (AChR) clustering. This work showcases how coupling multilayer network analysis with personalized -omics information provides molecular explanations to the varying severity of rare diseases; paving the way for sorting out similar cases in other rare diseases.


Subject(s)
Myasthenic Syndromes, Congenital , Humans , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/diagnosis , Neuromuscular Junction/metabolism , Rare Diseases/metabolism , Workflow , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism , Mutation
13.
J Appl Physiol (1985) ; 136(4): 753-763, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38357726

ABSTRACT

Sleep and circadian temperature disturbances occur with spaceflight and may, in part, result from the chronically elevated carbon dioxide (CO2) levels on the international space station. Impaired sleep may contribute to decreased glymphatic clearance and, when combined with the chronic headward fluid shift during actual spaceflight or the spaceflight analog head-down tilt bed rest (HDTBR), may contribute to the development of optic disc edema. We determined if strict HDTBR combined with mildly elevated CO2 levels influenced sleep and core temperature and was associated with the development of optic disc edema. Healthy participants (5 females) aged 25-50 yr, underwent 30 days of strict 6° HDTBR with ambient Pco2 = 4 mmHg. Measures of sleep, 24-h core temperature, overnight transcutaneous CO2, and Frisén grade edema were made pre-HDTBR, on HDTBR days 4, 17, 28, and post-HDTBR days 4 and 10. During all HDTBR time points, sleep, core temperature, and overnight transcutaneous CO2 were not different than the pre-HDTBR measurements. However, independent of the HDTBR intervention, the odds ratios {mean [95% confidence interval (CI)]} for developing Frisén grade optic disc edema were statistically significant for each hour below the mean total sleep time (2.2 [1.1-4.4]) and stage 2 nonrapid eye movement (NREM) sleep (4.8 [1.3-18.6]), and above the mean for wake after sleep onset (3.6 [1.2-10.6]) and for each 0.1°C decrease in core temperature amplitude below the mean (4.0 [1.4-11.7]). These data suggest that optic disc edema occurring during HDTBR was more likely to occur in those with short sleep duration and/or blunted temperature amplitude.NEW & NOTEWORTHY We determined that sleep and 24-h core body temperature were unaltered by 30 days exposure to the spaceflight analog strict 6° head-down tilt bed rest (HDTBR) in a 0.5% CO2 environment. However, shorter sleep duration, greater wake after sleep onset, and lower core temperature amplitude present throughout the study were associated with the development of optic disc edema, a key finding of spaceflight-associated neuro-ocular syndrome.


Subject(s)
Papilledema , Space Flight , Female , Humans , Bed Rest , Sleep Duration , Carbon Dioxide , Head-Down Tilt , Temperature , Hypercapnia , Sleep
15.
Eur J Hum Genet ; 32(2): 200-208, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37853102

ABSTRACT

Mobile element insertions (MEIs) are a known cause of genetic disease but have been underexplored due to technical limitations of genetic testing methods. Various bioinformatic tools have been developed to identify MEIs in Next Generation Sequencing data. However, most tools have been developed specifically for genome sequencing (GS) data rather than exome sequencing (ES) data, which remains more widely used for routine diagnostic testing. In this study, we benchmarked six MEI detection tools (ERVcaller, MELT, Mobster, SCRAMble, TEMP2 and xTea) on ES data and on GS data from publicly available genomic samples (HG002, NA12878). For all the tools we evaluated sensitivity and precision of different filtering strategies. Results show that there were substantial differences in tool performance between ES and GS data. MELT performed best with ES data and its combination with SCRAMble increased substantially the detection rate of MEIs. By applying both tools to 10,890 ES samples from Solve-RD and 52,624 samples from Radboudumc we were able to diagnose 10 patients who had remained undiagnosed by conventional ES analysis until now. Our study shows that MELT and SCRAMble can be used reliably to identify clinically relevant MEIs in ES data. This may lead to an additional diagnosis for 1 in 3000 to 4000 patients in routine clinical ES.


Subject(s)
Exome , Rare Diseases , Humans , Rare Diseases/genetics , Benchmarking , Exome Sequencing , Genetic Testing/methods
17.
Invest Ophthalmol Vis Sci ; 64(3): 32, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36988950

ABSTRACT

Purpose: Spaceflight-associated neuro-ocular syndrome (SANS) shares several clinical features with idiopathic intracranial-hypertension (IIH), namely disc edema, globe-flattening, hyperopia, and choroidal folds. Globe-flattening is caused by increased intracranial pressure (ICP) in IIH, but the cause in SANS is uncertain. If increased ICP alone causes SANS, then the ocular deformations should be similar to IIH; if not, alternative mechanisms would be implicated. Methods: Using optical coherence tomography (OCT) axial images of the optic nerve head, we compared "pre to post" ocular deformations in 22 patients with IIH to 25 crewmembers with SANS. We used two metrics to assess ocular deformations: displacements of Bruch's membrane opening (BMO-displacements) and Geometric Morphometrics to analyze peripapillary shape changes of Bruch's membrane layer (BML-shape). Results: We found a large disparity in the mean retinal nerve-fiber layer thickness between SANS (108 um; 95% confidence interval [CI] = 105-111 um) and IIH (300 um; 95% CI = 251-350.1 um). The pattern of BML-shape and BMO-displacements in SANS were significantly different from IIH (P < 0.0001). Deformations in IIH were large and preponderantly anterior, whereas the deformations in SANS were small and bidirectional. The degree of disc edema did not explain the differences in ocular deformations. Conclusions: This study showed substantial differences in the degree of disc edema and the pattern of ocular deformations between IIH and SANS. The precise cause for these differences is unknown but suggests that there may be fundamental differences in the underlying biomechanics of each consistent with the prevailing hypothesis that SANS is consequent to multiple factors beyond ICP alone. We propose a hypothetical model to explain the differences between IIH and SANS based on the pattern of indentation loads.


Subject(s)
Intracranial Hypertension , Pseudotumor Cerebri , Humans , Pseudotumor Cerebri/etiology , Pseudotumor Cerebri/complications , Intracranial Pressure/physiology , Vision Disorders , Vision, Ocular , Tomography, Optical Coherence/methods , Intracranial Hypertension/complications
18.
Cell Genom ; 3(2): 100246, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36819661

ABSTRACT

The Solve-RD project objectives include solving undiagnosed rare diseases (RD) through collaborative research on shared genome-phenome datasets. The RD-Connect Genome-Phenome Analysis Platform (GPAP), for data collation and analysis, and the European Genome-Phenome Archive (EGA), for file storage, are two key components of the Solve-RD infrastructure. Clinical researchers can identify candidate genetic variants within the RD-Connect GPAP and, thanks to the developments presented here as part of joint ELIXIR activities, are able to remotely visualize the corresponding alignments stored at the EGA. The Global Alliance for Genomics and Health (GA4GH) htsget streaming application programming interface (API) is used to retrieve alignment slices, which are rendered by an integrated genome viewer (IGV) instance embedded in the GPAP. As a result, it is no longer necessary for over 11,000 datasets to download large alignment files to visualize them locally. This work highlights the advantages, from both the user and infrastructure perspectives, of implementing interoperability standards for establishing federated genomics data networks.

19.
JAMA Ophthalmol ; 141(2): 168-175, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36602790

ABSTRACT

Importance: The primary contributing factor for development of chorioretinal folds during spaceflight is unknown. Characterizing fold types that develop and tracking their progression may provide insight into the pathophysiology of spaceflight-associated neuro-ocular syndrome and elucidate the risk of fold progression for future exploration-class missions exceeding 12 months in duration. Objective: To determine the incidence and presentation of chorioretinal folds in long-duration International Space Station crew members and objectively quantify the progression of choroidal folds during spaceflight. Design, Setting, and Participants: In this retrospective cohort study, optical coherence tomography scans of the optic nerve head and macula of crew members completing long-duration spaceflight missions were obtained on Earth prior to spaceflight and during flight. A panel of experts examined the scans for the qualitative presence of chorioretinal folds. Peripapillary total retinal thickness was calculated to identify eyes with optic disc edema, and choroidal folds were quantified based on surface roughness within macular and peripapillary regions of interest. Interventions or Exposures: Spaceflight missions ranging 6 to 12 months. Main Outcomes and Measures: Incidence of peripapillary wrinkles, retinal folds, and choroidal folds; peripapillary total retinal thickness; and Bruch membrane surface roughness. Results: A total of 36 crew members were analyzed (mean [SD] age, 46 [6] years; 7 [19%] female). Chorioretinal folds were observed in 12 of 72 eyes (17%; 6 crew members). In eyes with early signs of disc edema, 10 of 42 (24%) had choroidal folds, 4 of 42 (10%) had inner retinal folds, and 2 of 42 (5%) had peripapillary wrinkles. Choroidal folds were observed in all eyes with retinal folds and peripapillary wrinkles. Macular choroidal folds developed in 7 of 12 eyes (4 of 6 crew members) with folds and progressed with mission duration; these folds extended into the fovea in 6 eyes. Circumpapillary choroidal folds developed predominantly superior, nasal, and inferior to the optic nerve head and increased in prevalence and severity with mission duration. Conclusions and Relevance: Choroidal folds were the most common fold type to develop during spaceflight; this differs from reports in idiopathic intracranial hypertension, suggesting differences in the mechanisms underlying fold formation. Quantitative measures demonstrate the development and progression of choroidal folds during weightlessness, and these metrics may help to assess the efficacy of spaceflight-associated neuro-ocular syndrome countermeasures.


Subject(s)
Choroid Diseases , Intracranial Hypertension , Retinal Diseases , Space Flight , Humans , Female , Middle Aged , Male , Intracranial Pressure/physiology , Retrospective Studies , Incidence , Intracranial Hypertension/complications , Choroid Diseases/diagnosis , Choroid Diseases/epidemiology , Choroid Diseases/etiology , Retinal Diseases/diagnosis , Retinal Diseases/epidemiology , Retinal Diseases/etiology
20.
Front Ophthalmol (Lausanne) ; 3: 1279831, 2023.
Article in English | MEDLINE | ID: mdl-38983014

ABSTRACT

Some astronauts on International Space Station missions experience neuroophthalmological pathologies as part of spaceflight associated neuro-ocular syndrome (SANS). Strict head-down tilt bed rest (HDTBR) is a spaceflight analog that replicates SANS findings and those who had 3-4 risk alleles (G and C alleles from the methionine synthase reductase [MTRR] A66G and serine hydroxymethyltransferase [SHMT1] C1420T, respectively) as compared to 1-2 risk alleles, had a greater increase in total retinal thickness (TRT). The objective of this study was to identify factors that contribute to the individual variability of the development of SANS in a 60 d HDTBR at the German Aerospace Center's:envihab facility, Cologne Germany. 22 of 24 subjects who participated in the HDTBR study provided blood samples for genetic analysis. Total retinal thickness and optic cup volume were measured before and after bed rest. Subjects with 3-4 versus 0-2 risk alleles had greater ΔTRT during and after bed rest, and the model improved with the addition of baseline optic cup volume. This bed rest study confirms that variants of MTRR and SHMT1 are associated with ocular pathologies. Subjects with more risk alleles had the greatest HDTBR-induced ΔTRT, reaffirming that genetics predispose some individuals to developing SANS. Preflight optic cup volume and genetics better predict ΔTRT than either one alone. Whether nutritional supplements can override the genetic influences on biochemistry, physiology, and pathophysiology remains to be tested. These findings have significant implications for both aerospace and terrestrial medicine.

SELECTION OF CITATIONS
SEARCH DETAIL