Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
BMC Genomics ; 23(1): 442, 2022 Jun 15.
Article En | MEDLINE | ID: mdl-35701764

The cultivation of edible mushroom is an emerging sector with a potential yet to be discovered. Unlike plants, it is a less developed agriculture where many studies are lacking to optimize the cultivation. In this work we have employed high-throughput techniques by next generation sequencing to screen the microbial structure of casing soil employed in mushroom cultivation (Agaricus bisporus) while sequencing V3-V4 of the 16S rRNA gene for bacteria and the ITS2 region of rRNA for. In addition, the microbiota dynamics and evolution (bacterial and fungal communities) in peat-based casing along the process of incubation of A. bisporus have been studied, while comparing the effect of fungicide treatment (chlorothalonil and metrafenone). Statistically significant changes in populations of bacteria and fungi were observed. Microbial composition differed significantly based on incubation day, changing radically from the original communities in the raw material to a specific microbial composition driven by the A. bisporus mycelium growth. Chlorothalonil treatment seems to delay casing colonization by A. bisporus. Proteobacteria and Bacteroidota appeared as the most dominant bacterial phyla. We observed a great change in the structure of the bacteria populations between day 0 and the following days. Fungi populations changed more gradually, with A. bisporus displacing the rest of the species as the cultivation cycle progresses. A better understanding of the microbial communities in the casing will hopefully allow us to increase the biological efficiency of the crop.


Agaricus , Fungicides, Industrial , Agaricus/genetics , Bacteria/genetics , Fungi/genetics , Fungicides, Industrial/pharmacology , RNA, Ribosomal, 16S/genetics , Soil
2.
Microb Biotechnol ; 13(6): 1933-1947, 2020 11.
Article En | MEDLINE | ID: mdl-32716608

Microorganisms strongly influence and are required to generate the selective substrate that provides nutrients and support for fungal growth, and ultimately to induce mushroom fructification under controlled environmental conditions. In this work, the fungal and bacterial microbiota living in the different substrates employed in a commercial crop (compost phase I, II and III, flush 1 and 2, and casing material on day 1, 6 and 8 after compost casing and during flush 1 and 2) have been characterized along the different stages of cultivation by metataxonomic analysis (16S rRNA and ITS2), analysis of phospholipid fatty acid content (PLFAs) and RT-qPCR. Additionally, laccase activity and the content of lignin and complex carbohydrates in compost and casing have been quantified. The bacterial diversity in compost and casing increased throughout the crop cycle boosted by the connection of both substrates. As reflected by the PLFAs, the total living bacterial biomass appears to be negatively correlated with the mycelium of the crop. Agaricus bisporus was the dominant fungal species in colonized substrates, displacing the pre-eminent Ascomycota, accompanied by a sustained increase in laccase activity, which is considered to be a major product of protein synthesis during the mycelial growth of champignon. From phase II onwards, the metabolic machinery of the fungal crop degrades lignin and carbohydrates in compost, while these components are hardly degraded in casing, which reflects the minor role of the casing for nourishing the crop. The techniques employed in this study provide a holistic and detailed characterization of the changing microbial composition in commercial champignon substrates. The knowledge generated will contribute to improve compost formulations (selection of base materials) and accelerate compost production, for instance, through biotechnological interventions in the form of tailored biostimulants and to design environmentally sustainable bio-based casing materials.


Agaricus , Composting , Microbiota , RNA, Ribosomal, 16S/genetics , Soil
...