Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 16(737): eadf4601, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446899

ABSTRACT

Patients with cancer undergoing chemotherapy frequently experience a neurological condition known as chemotherapy-related cognitive impairment, or "chemobrain," which can persist for the remainder of their lives. Despite the growing prevalence of chemobrain, both its underlying mechanisms and treatment strategies remain poorly understood. Recent findings suggest that chemobrain shares several characteristics with neurodegenerative diseases, including chronic neuroinflammation, DNA damage, and synaptic loss. We investigated whether a noninvasive sensory stimulation treatment we term gamma entrainment using sensory stimuli (GENUS), which has been shown to alleviate aberrant immune and synaptic pathologies in mouse models of neurodegeneration, could also mitigate chemobrain phenotypes in mice administered a chemotherapeutic drug. When administered concurrently with the chemotherapeutic agent cisplatin, GENUS alleviated cisplatin-induced brain pathology, promoted oligodendrocyte survival, and improved cognitive function in a mouse model of chemobrain. These effects persisted for up to 105 days after GENUS treatment, suggesting the potential for long-lasting benefits. However, when administered to mice 90 days after chemotherapy, GENUS treatment only provided limited benefits, indicating that it was most effective when used to prevent the progression of chemobrain pathology. Furthermore, we demonstrated that the effects of GENUS in mice were not limited to cisplatin-induced chemobrain but also extended to methotrexate-induced chemobrain. Collectively, these findings suggest that GENUS may represent a versatile approach for treating chemobrain induced by different chemotherapy agents.


Subject(s)
Chemotherapy-Related Cognitive Impairment , Cognitive Dysfunction , Humans , Animals , Mice , Cisplatin/adverse effects , Cognition , DNA Damage , Disease Models, Animal
2.
Nature ; 627(8002): 149-156, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418876

ABSTRACT

The glymphatic movement of fluid through the brain removes metabolic waste1-4. Noninvasive 40 Hz stimulation promotes 40 Hz neural activity in multiple brain regions and attenuates pathology in mouse models of Alzheimer's disease5-8. Here we show that multisensory gamma stimulation promotes the influx of cerebrospinal fluid and the efflux of interstitial fluid in the cortex of the 5XFAD mouse model of Alzheimer's disease. Influx of cerebrospinal fluid was associated with increased aquaporin-4 polarization along astrocytic endfeet and dilated meningeal lymphatic vessels. Inhibiting glymphatic clearance abolished the removal of amyloid by multisensory 40 Hz stimulation. Using chemogenetic manipulation and a genetically encoded sensor for neuropeptide signalling, we found that vasoactive intestinal peptide interneurons facilitate glymphatic clearance by regulating arterial pulsatility. Our findings establish novel mechanisms that recruit the glymphatic system to remove brain amyloid.


Subject(s)
Alzheimer Disease , Amyloid , Brain , Cerebrospinal Fluid , Extracellular Fluid , Gamma Rhythm , Glymphatic System , Animals , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/prevention & control , Amyloid/metabolism , Aquaporin 4/metabolism , Astrocytes/metabolism , Brain/cytology , Brain/metabolism , Brain/pathology , Cerebrospinal Fluid/metabolism , Disease Models, Animal , Extracellular Fluid/metabolism , Glymphatic System/physiology , Interneurons/metabolism , Vasoactive Intestinal Peptide/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Electric Stimulation
3.
Adv Funct Mater ; 30(1)2020 Jan 03.
Article in English | MEDLINE | ID: mdl-32038121

ABSTRACT

Neural regeneration devices interface with the nervous system and can provide flexibility in material choice, implantation without the need for additional surgeries, and the ability to serve as guides augmented with physical, biological (e.g., cellular), and biochemical functionalities. Given the complexity and challenges associated with neural regeneration, a 3D printing approach to the design and manufacturing of neural devices could provide next-generation opportunities for advanced neural regeneration via the production of anatomically accurate geometries, spatial distributions of cellular components, and incorporation of therapeutic biomolecules. A 3D printing-based approach offers compatibility with 3D scanning, computer modeling, choice of input material, and increasing control over hierarchical integration. Therefore, a 3D printed implantable platform could ultimately be used to prepare novel biomimetic scaffolds and model complex tissue architectures for clinical implants in order to treat neurological diseases and injuries. Further, the flexibility and specificity offered by 3D printed in vitro platforms have the potential to be a significant foundational breakthrough with broad research implications in cell signaling and drug screening for personalized healthcare. This progress report examines recent advances in 3D printing strategies for neural regeneration as well as insight into how these approaches can be improved in future studies.

4.
J Neurotrauma ; 35(15): 1745-1754, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29373946

ABSTRACT

There are no effective therapies available currently to ameliorate loss of function for patients with spinal cord injuries (SCIs). In addition, proposed treatments that demonstrated functional recovery in animal models of acute SCI have failed almost invariably when applied to chronic injury models. Glial scar formation in chronic injury is a likely contributor to limitation on regeneration. We have removed existing scar tissue in chronically contused rat spinal cord using a rose Bengal-based photo ablation approach. In this study, we compared two chemically modified rose bengal derivatives to unmodified rose bengal, both confirming and expanding on our previously published report. Rats were treated with unmodified rose bengal (RB1) or rose bengal modified with hydrocarbon (RB2) or polyethylene glycol (RB3), to determine the effects on scar components and spared tissue post-treatment. Our results showed that RB1 was more efficacious than RB2, while still maintaining minimal collateral effects on spared tissue. RB3 was not taken up by the cells, likely because of its size, and therefore had no effect. Treatment with RB1 also resulted in an increase in serotonin eight days post-treatment in chronically injured spinal cords. Thus, we suggest that unmodified rose Bengal is a potent candidate agent for the development of a therapeutic strategy for scar ablation in chronic SCI.


Subject(s)
Cicatrix/pathology , Fluorescent Dyes/pharmacology , Phototherapy/methods , Rose Bengal/pharmacology , Spinal Cord Injuries/pathology , Animals , Chronic Disease , Nerve Regeneration/drug effects , Neuroglia/pathology , Rats , Rats, Long-Evans , Recovery of Function/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...