Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 54(2): 817-24, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19949058

ABSTRACT

GSK812397 is a potent entry inhibitor of X4-tropic strains of HIV-1, as demonstrated in multiple in vitro cellular assays (e.g., in peripheral blood mononuclear cells [PBMCs] and a viral human osteosarcoma [HOS] assay, mean 50% inhibitory concentrations [IC50s]+/-standard errors of the means were 4.60+/-1.23 nM and 1.50+/-0.21 nM, respectively). The primary in vitro potency of GSK812397 was not significantly altered by the addition of serum proteins (2.55 [+/-0.12]-fold shift in the presence of human serum albumin and alpha-acid glycoprotein in the PBMC assay). Pharmacological characterization of GSK812397 in cell-based functional assays revealed it to be a noncompetitive antagonist of the CXCR4 receptor, with GSK812397 producing a concentration-dependent decrease in both an SDF-1-mediated chemotaxis and intracellular calcium release (IC50s were 0.34+/-0.01 nM and 2.41+/-0.50 nM, respectively). With respect to the antiviral activity of GSK812397, it was effective against a broad range of X4- and X4R5-utilizing clinical isolates. The potency and efficacy of GSK812397 were dependent on the individual isolate, with complete inhibition of infection observed with 24 of 30 isolates. GSK812397 did not show any detectable in vitro cytotoxicity and was highly selective for CXCR4, as determined using a wide range of receptors, enzymes, and transporters. Moreover, GSK812397 demonstrated acceptable pharmacokinetic properties and bioavailability across species. The data demonstrate that GSK812397 has antiviral activity against a broad range of X4-utilizing strains of HIV-1 via a noncompetitive antagonism of the CXCR4 receptor.


Subject(s)
Aminoquinolines/pharmacology , HIV Fusion Inhibitors/pharmacology , HIV-1/drug effects , Imidazoles/pharmacology , Receptors, CXCR4/antagonists & inhibitors , Cell Line , Cell Line, Tumor , Cells, Cultured , Chemotaxis/drug effects , Enzyme Activation/drug effects , HIV Fusion Inhibitors/pharmacokinetics , HIV Infections/prevention & control , HIV-1/physiology , Humans , Virus Replication/drug effects
2.
Bioorg Med Chem Lett ; 19(17): 5048-52, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19640718

ABSTRACT

Several novel amine substituted N-(1H-benzimidazol-2ylmethyl)-5,6,7,8-tetrahydro-8-quinolinamines were synthesized which had potent activity against HIV-1. The synthetic approaches adopted allowed for variation of the substitution pattern and resulting changes in antiviral activity are highlighted. This led to the identification of compounds with low and sub-nanomolar anti-HIV-1 activity.


Subject(s)
Amines/chemistry , Anti-HIV Agents/chemistry , Benzimidazoles/chemistry , HIV-1/drug effects , Receptors, CXCR4/antagonists & inhibitors , Acquired Immunodeficiency Syndrome/drug therapy , Amines/chemical synthesis , Amines/pharmacology , Aminoquinolines , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacology , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Butylamines , Cell Line, Tumor , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Receptors, CXCR4/metabolism
3.
Antiviral Res ; 82(1): 1-11, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19187793

ABSTRACT

GSK983, a novel tetrahydrocarbazole, inhibits the replication of a variety of unrelated viruses in vitro with EC(50) values of 5-20 nM. Both replication of the adenovirus Ad-5 and the polyoma virus SV-40, and episomal maintenance of human papillomaviruses (HPV) and Epstein-Barr virus (EBV) are susceptible to GSK983. The compound does not inhibit all viruses; herpes simplex virus (HSV-1), human immunodeficiency virus (HIV), and lytic replication of EBV were not susceptible at concentrations below 1 microM. GSK983 does inhibit the growth of cell lines immortalized by HTLV-1, EBV, HPV, SV40 and Ad-5, with EC(50) values in the range of 10-40 nM. Depending on the cell line, the compound induces either apoptosis or cytostasis at concentrations over 20 nM. GSK983 also inhibits cell lines immortalized by non-viral mechanisms, but has little effect on primary cells. The CC(50) values for keratinocytes, fibroblasts, lymphocytes, endothelial, and bone marrow progenitor cells are all above 10 microM. The pattern of inhibition, which includes diverse viruses as well as growth of immortalized cells of varied origins, suggests the target is a host cell protein, rather than a viral protein. Preliminary mechanism studies indicate that GSK983 acts by inducing a subset of interferon-stimulated genes.


Subject(s)
Antiviral Agents/pharmacology , Carbazoles/pharmacology , DNA Viruses/drug effects , Apoptosis/drug effects , Cell Line, Transformed , Cell Transformation, Viral , Cells, Cultured , DNA Viruses/physiology , Humans , Virus Replication/drug effects
4.
J Biomol Screen ; 8(4): 463-70, 2003 Aug.
Article in English | MEDLINE | ID: mdl-14567799

ABSTRACT

The initial event by which M-tropic HIV strains gain access to cells is via interaction of the viral envelope protein gp120 with the host cell CCR5 coreceptor and CD4. Inhibition of this event reduces viral fusion and entry into cells in vitro. The authors have employed BacMam baculovirus-mediated gene transduction to develop a cell/cell fusion assay that mimics the HIV viral/cell fusion process and allows high-throughput quantification of this fusion event. The assay design uses human osteosarcoma (HOS) cells stably transfected with cDNAs expressing CCR5, CD4, and long terminal repeat (LTR)-luciferase as the recipient host cell. An HEK-293 cell line transduced with BacMam viral constructs to express the viral proteins gp120, gp41, tat, and rev represents the virus. Interaction of gp120 with CCR5/CD4 results in the fusion of the 2 cells and transfer of tat to the HOS cell cytosol; tat, in turn, binds to the LTR region on the luciferase reporter and activates transcription, resulting in an increase in cellular luciferase activity. In conclusion, the cell/cell fusion assay developed has been demonstrated to be a robust and reproducible high-throughput surrogate assay that can be used to assess the effects of compounds on gp120/CCR5/CD4-mediated viral fusion into host cells.


Subject(s)
Baculoviridae/genetics , CD4 Antigens/metabolism , Cell Fusion , HIV Envelope Protein gp120/metabolism , HIV , Piperidines , Receptors, CCR5/metabolism , Amides/pharmacology , Butyric Acid/pharmacology , CCR5 Receptor Antagonists , Cell Line , Cell Line, Tumor , Cyclic N-Oxides/pharmacology , Dimethyl Sulfoxide/pharmacology , Gene Products, env/metabolism , Gene Products, rev/genetics , Gene Products, rev/metabolism , Gene Products, tat/genetics , Gene Products, tat/metabolism , HIV Long Terminal Repeat/genetics , Humans , Oximes , Plasmids , Pyridines/pharmacology , Quaternary Ammonium Compounds/pharmacology , Transduction, Genetic , Transfection , rev Gene Products, Human Immunodeficiency Virus , tat Gene Products, Human Immunodeficiency Virus
5.
Recept Channels ; 9(2): 117-23, 2003.
Article in English | MEDLINE | ID: mdl-12916472

ABSTRACT

M-tropic HIV strains gain access to their host cell via interaction of the viral envelope protein gp120 with the CCR5 coreceptor and CD4 located on the host cell. Inhibition of this event has been shown to reduce viral fusion and entry into cells in vitro. In the present study we describe the development of a novel cell/cell fusion assay that both mimics the viral/cell fusion process and allows quantification of this event. The assay has been characterized both biochemically, using selective antibodies, and pharmacologically, using selective CCR5 antagonists, and has been shown to be selective for examining the interaction of viral gp120 with hCCR5/hCD4. In addition, compound pIC50 data obtained from this cell/cell fusion assay correlates well (r2 = 0.7274) with data obtained from an HIV-1 replication assay. Furthermore, this assay has the added ability to simultaneously determine compound toxicity, thus allowing rapid determination of active, non-toxic compounds. In conclusion, the cell/cell fusion assay developed has been demonstrated to be a suitable surrogate assay that can be used to assess the effects of compounds on gp120/CCR5/CD4 mediated viral fusion into host cells.


Subject(s)
Biological Assay , HIV-1/metabolism , Receptors, CCR5/metabolism , Animals , CHO Cells , Cell Fusion , Cricetinae , Cricetulus , Humans , Osteosarcoma
6.
Curr Drug Targets Infect Disord ; 2(3): 265-78, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12462129

ABSTRACT

With the discovery that CCR5 is the critical protein required for infection by M-tropic HIV, has come huge research efforts, both in academia and industry, to try to exploit this finding. Thus, research advances in the fields of virology, structural protein chemistry, and receptor pharmacology have combined to add a new understanding to the process of HIV fusion and possible mechanisms to prevent HIV entry. This review will approach this field from a receptor pharmacology viewpoint and outline some concepts of receptor allosterism and protein-protein interaction which may be relevant to CCR5 blockade. Many of these ideas may be explored in a practical sense with the advent of new small molecule CCR5 inhibitors currently entering the clinic.


Subject(s)
Acquired Immunodeficiency Syndrome/drug therapy , Anti-HIV Agents/pharmacology , CCR5 Receptor Antagonists , HIV-1/drug effects , Dimerization , Endocytosis , Receptors, CCR5/chemistry , Receptors, CCR5/metabolism , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL