Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Metab ; : 102016, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39182842

ABSTRACT

OBJECTIVE: A prominent, safe and efficient therapy for patients with chronic myeloid leukemia (CML) is inhibiting oncogenic protein BCR::ABL1 in a targeted manner with imatinib, a tyrosine kinase inhibitor. A substantial part of patients treated with imatinib report skeletomuscular adverse events affecting their quality of life. OCTN2 membrane transporter is involved in imatinib transportation into the cells. At the same time, the crucial physiological role of OCTN2 is cellular uptake of carnitine which is an essential co-factor for the mitochondrial ß-oxidation pathway. This work investigates the impact of imatinib treatment on carnitine intake and energy metabolism of muscle cells. METHODS: HTB-153 (human rhabdomyosarcoma) cell line and KCL-22 (CML cell line) were used to study the impact of imatinib treatment on intracellular levels of carnitine and vice versa. The energy metabolism changes in cells treated by imatinib were quantified and compared to changes in cells exposed to highly specific OCTN2 inhibitor vinorelbine. Mouse models were used to test whether in vitro observations are also achieved in vivo in thigh muscle tissue. The analytes of interest were quantified using a Prominence HPLC system coupled with a tandem mass spectrometer. RESULTS: This work showed that through the carnitine-specific transporter OCTN2, imatinib and carnitine intake competed unequally and intracellular carnitine concentrations were significantly reduced. In contrast, carnitine preincubation did not influence imatinib cell intake or interfere with leukemia cell targeting. Blocking the intracellular supply of carnitine with imatinib significantly reduced the production of most Krebs cycle metabolites and ATP. However, subsequent carnitine supplementation rescued mitochondrial energy production. Due to specific inhibition of OCTN2 activity, the influx of carnitine was blocked and mitochondrial energy metabolism was impaired in muscle cells in vitro and in thigh muscle tissue in a mouse model. CONCLUSIONS: This preclinical experimental study revealed detrimental effect of imatinib on carnitine-mediated energy metabolism of muscle cells providing a possible molecular background of the frequently occurred side effects during imatinib therapy such as fatigue, muscle pain and cramps.

3.
Front Oncol ; 11: 744373, 2021.
Article in English | MEDLINE | ID: mdl-34616685

ABSTRACT

Somatic mutations are a common molecular mechanism through which chronic myeloid leukemia (CML) cells acquire resistance to tyrosine kinase inhibitors (TKIs) therapy. While most of the mutations in the kinase domain of BCR-ABL1 can be successfully managed, the recurrent somatic mutations in other genes may be therapeutically challenging. Despite the major clinical relevance of mutation-associated resistance in CML, the mechanisms underlying mutation acquisition in TKI-treated leukemic cells are not well understood. This work demonstrated de novo acquisition of mutations on isolated single-cell sorted CML clones growing in the presence of imatinib. The acquisition of mutations was associated with the significantly increased expression of the LIG1 and PARP1 genes involved in the error-prone alternative nonhomologous end-joining pathway, leading to genomic instability, and increased expression of the UNG, FEN and POLD3 genes involved in the base-excision repair (long patch) pathway, allowing point mutagenesis. This work showed in vitro and in vivo that de novo acquisition of resistance-associated mutations in oncogenes is the prevalent method of somatic mutation development in CML under TKIs treatment.

SELECTION OF CITATIONS
SEARCH DETAIL