Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Bioorg Chem ; 103: 104165, 2020 10.
Article in English | MEDLINE | ID: mdl-32891856

ABSTRACT

Multitarget-directed ligands are a promising class of drugs for discovering innovative new therapies for difficult to treat diseases. In this study, we designed dual inhibitors targeting the human fatty acid amide hydrolase (FAAH) enzyme and human soluble epoxide hydrolase (sEH) enzyme. Targeting both of these enzymes concurrently with single target inhibitors synergistically reduces inflammatory and neuropathic pain; thus, dual FAAH/sEH inhibitors are likely to be powerful analgesics. Here, we identified the piperidinyl-sulfonamide moiety as a common pharmacophore and optimized several inhibitors to have excellent inhibition profiles on both targeted enzymes simultaneously. In addition, several inhibitors show good predicted pharmacokinetic properties. These results suggest that this series of inhibitors has the potential to be further developed as new lead candidates and therapeutics in pain management.


Subject(s)
Molecular Docking Simulation/methods , Pain/drug therapy , Humans , Models, Molecular , Structure-Activity Relationship
2.
Chem Biol Drug Des ; 95(5): 534-547, 2020 05.
Article in English | MEDLINE | ID: mdl-32061147

ABSTRACT

Endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are endogenous lipids that activate cannabinoid receptors. Activation of these receptors produces anti-inflammatory and analgesic effects. Fatty acid amide hydrolase (FAAH) is a membrane enzyme that hydrolases endocannabinoids; thus, inhibition of FAAH represents an attractive approach to develop new therapeutics for treating inflammation and pain. Previously, potent rat FAAH inhibitors containing 2-naphthyl- and 4-phenylthiazole scaffolds were identified, but up to the present time, very little structure-activity relationship studies have been performed on these moieties. We designed and synthesized several analogs containing these structural motifs and evaluated their inhibition potencies against human FAAH enzyme. In addition, we built and validated a homology model of human FAAH enzyme and performed docking experiments. We identified several inhibitors in the low nanomolar range and calculated their ADME predicted values. These FAAH inhibitors represent promising drug candidates for future preclinical in vivo studies.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemical synthesis , Microwaves , Thiazoles/chemistry , Amidohydrolases/metabolism , Binding Sites , Catalytic Domain , Enzyme Inhibitors/metabolism , Humans , Molecular Docking Simulation , Structure-Activity Relationship , Thiazoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL