Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
Ann Med Surg (Lond) ; 86(8): 4811-4815, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39118674

ABSTRACT

Introduction and importance: Gallbladder cancer is an extremely aggressive digestive system tumor. It is difficult to treat as early symptoms are insidious, and patients are usually diagnosed in advanced stages. The authors' case highlights the need for effective treatment strategies and underscores the critical role of an individualized approach in the management of complicated gallbladder cancer. Case presentation: The authors report a patient admitted to the hospital with back pain and discomfort who was diagnosed with advanced gallbladder cancer. The patient received two cycles of chemotherapy with gemcitabine and cisplatin (GC), but the response was unsatisfactory. The authors changed the treatment regimen to gemcitabine and oxaliplatin (GEMOX) combined with targeted therapy (lenvatinib) and immunotherapy (toripalimab), and achieved significant therapeutic effect. Subsequently, the patient underwent "extended right hemihepatectomy, cholecystectomy, lymph node dissection of the hepatoduodenal ligament " and continued to receive combined therapy after surgery, and no tumor recurrence has been observed so far. Clinical discussion: The authors delve into the challenges faced during treatment, exploring the subtle impact of modified regimens and the strategic integration of surgery and combination therapy. The focus of this study is on the intricate synergy between GEMOX, lenvatinib and teraplizumab, providing a holistic view of treatment effects and new insights into the clinical decision-making process. Conclusions: This case emphasizes the success of precision medicine in the treatment of advanced gallbladder cancer. The adjustment of strategy can not only improve the therapeutic effect but also promote the success of surgical intervention. This case provides a valuable lesson in the holistic management of gallbladder cancer patients and prompts further reflection on the nuances of individualized therapeutic approaches in cancer treatment.

2.
Fitoterapia ; 178: 106190, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153556

ABSTRACT

Three new neo-5,10-seco-clerodane diterpenoids (1-3), four previously undescribed ethoxy/methoxy acetal analogues (4-7), one new etherified labdane diterpenoid (8), and seven known diterpenoids (9-15) were isolated from the whole plant of Schnabelia terniflora. Their structures were established on the basis of extensive spectroscopic analysis, single-crystal X-ray diffraction data, calculated electronic circular dichroism (ECD), and Mo2(OAc)4-induced circular dichroism. Compounds 2 and 3 represent the first examples of neo-5,10-seco-clerodane diterpenoids containing a 1H-pyrrole-2,5-dione and a pyrrolidine-2,5-dione moiety, respectively. A plausible biosynthetic pathway for 1-3 is proposed. All diterpenoids were evaluated for their cytotoxic activity against non-small-cell lung cancer lines (A549 and H460) and gastric cancer lines (HGC27 and AGS). Among them, 2 and 14 showed moderate cytotoxicity against four cell lines.

3.
Front Microbiol ; 15: 1410505, 2024.
Article in English | MEDLINE | ID: mdl-39027092

ABSTRACT

Coenzyme Q10 (CoQ10) is an essential medicinal ingredient. In this study, we obtained a high-yielding mutant strain of CoQ10, VK-2-3, by subjecting R. sphaeroides V-0 (V-0) to a 12C6+ heavy ion beam and high-voltage prick electric field treatment. To investigate the mutation mechanism, the complete genomes of VK-2-3 and V-0 were sequenced. Collinearity analysis revealed that the nicotinamide adenine dinucleotide-dependent dehydrogenase (NAD) gene underwent rearrangement in the VK-2-3 genome. The NAD gene was overexpressed and silenced in V-0, and this construct was named RS.NAD and RS.ΔNAD. The results showed that the titers of CoQ10 in the RS.NAD and RS.ΔNAD increased and decreased by 16.00 and 33.92%, respectively, compared to those in V-0, and these differences were significant. Our results revealed the mechanism by which the VK-2-3 CoQ10 yield increases through reverse metabolic engineering, providing insights for genetic breeding and mechanistic analysis.

4.
J Fluoresc ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037680

ABSTRACT

Fluorescent probes with specific and rapid response to fluoride ions are important mediators for detecting fluoride ions in biological systems. In this study, a phenothiazine-based fluorescent probe, PTC, was designed and synthesized, which undergoes cleavage activation and cyclization induced by fluoride ions targeting Si-O bonds. The probe exhibits strong anti-interference properties and reaches peak fluorescence within 5 min, allowing for quantitative detection of fluoride ions content in the concentration range of 0 to 12.5µM, suitable for live cell fluorescence imaging. The research findings suggest its potential application value in biological systems.

5.
Food Res Int ; 190: 114560, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945596

ABSTRACT

Obesity, a global health crisis, is fueled by shifts in behavior and environmental factors, notably increased consumption of energy-dense processed foods and inadequate dietary fiber. Traditional weight loss methods pose safety challenges. Sodium carboxymethylcellulose (CMC), a promising dietary fiber supplement, aids weight management. However, CMC-based hydrogels have mechanical weaknesses and poor gastrointestinal retention. A new dual-network structured hydrogel here was introduced to address these issues, maintaining volume and elasticity in the digestive system without adding calories, reducing caloric density, and enhancing food elasticity for prolonged satiety. The study assessed four distinct hydrogels, analyzing their mechanical characteristics under simulated gastrointestinal conditions and biomimetic digestion to identify promising options for clinical development. This dual-network hydrogel exhibits a mechanical strength up to 100 times that of the original gel, while its swelling rate throughout the digestion process is approximately twice that of the original gel. This offers a potential solution for obesity management, providing sustained satiety and addressing the mechanical deficiencies of current hydrogels within the digestive system.


Subject(s)
Carboxymethylcellulose Sodium , Hydrogels , Obesity , Hydrogels/chemistry , Carboxymethylcellulose Sodium/chemistry , Digestion , Humans , Dietary Fiber , Weight Loss , Elasticity
6.
Neurochem Res ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864944

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease with a challenging treatment landscape, due to its complex pathogenesis and limited availability of clinical drugs. Ferroptosis, an iron-dependent form of programmed cell death (PCD), stands distinct from apoptosis, necrosis, autophagy, and other cell death mechanisms. Recent studies have increasingly highlighted the role of iron deposition, reactive oxygen species (ROS) accumulation, oxidative stress, as well as systemic Xc- and glutamate accumulation in the antioxidant system in the pathogenesis of amyotrophic lateral sclerosis. Therefore, targeting ferroptosis emerges as a promising strategy for amyotrophic lateral sclerosis treatment. This review introduces the regulatory mechanism of ferroptosis, the relationship between amyotrophic lateral sclerosis and ferroptosis, and the drugs used in the clinic, then discusses the current status of amyotrophic lateral sclerosis treatment, hoping to provide new directions and targets for its treatment.

7.
Cell Genom ; 4(5): 100550, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38697125

ABSTRACT

To identify novel susceptibility genes for hepatocellular carcinoma (HCC), we performed a rare-variant association study in Chinese populations consisting of 2,750 cases and 4,153 controls. We identified four HCC-associated genes, including NRDE2, RANBP17, RTEL1, and STEAP3. Using NRDE2 (index rs199890497 [p.N377I], p = 1.19 × 10-9) as an exemplary candidate, we demonstrated that it promotes homologous recombination (HR) repair and suppresses HCC. Mechanistically, NRDE2 binds to the subunits of casein kinase 2 (CK2) and facilitates the assembly and activity of the CK2 holoenzyme. This NRDE2-mediated enhancement of CK2 activity increases the phosphorylation of MDC1 and then facilitates the HR repair. These functions are eliminated almost completely by the NRDE2-p.N377I variant, which sensitizes the HCC cells to poly(ADP-ribose) polymerase (PARP) inhibitors, especially when combined with chemotherapy. Collectively, our findings highlight the relevance of the rare variants to genetic susceptibility to HCC, which would be helpful for the precise treatment of this malignancy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Recombinational DNA Repair , Animals , Female , Humans , Male , Mice , Middle Aged , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Casein Kinase II/genetics , Casein Kinase II/metabolism , Cell Line, Tumor , Genetic Predisposition to Disease , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Recombinational DNA Repair/drug effects , Mice, Nude , Mice, Inbred BALB C , Adult
8.
Int J Ophthalmol ; 17(3): 473-479, 2024.
Article in English | MEDLINE | ID: mdl-38721502

ABSTRACT

AIM: To establish a classification for congenital cataracts that can facilitate individualized treatment and help identify individuals with a high likelihood of different visual outcomes. METHODS: Consecutive patients diagnosed with congenital cataracts and undergoing surgery between January 2005 and November 2021 were recruited. Data on visual outcomes and the phenotypic characteristics of ocular biometry and the anterior and posterior segments were extracted from the patients' medical records. A hierarchical cluster analysis was performed. The main outcome measure was the identification of distinct clusters of eyes with congenital cataracts. RESULTS: A total of 164 children (299 eyes) were divided into two clusters based on their ocular features. Cluster 1 (96 eyes) had a shorter axial length (mean±SD, 19.44±1.68 mm), a low prevalence of macular abnormalities (1.04%), and no retinal abnormalities or posterior cataracts. Cluster 2 (203 eyes) had a greater axial length (mean±SD, 20.42±2.10 mm) and a higher prevalence of macular abnormalities (8.37%), retinal abnormalities (98.52%), and posterior cataracts (4.93%). Compared with the eyes in Cluster 2 (57.14%), those in Cluster 1 (71.88%) had a 2.2 times higher chance of good best-corrected visual acuity [<0.7 logMAR; OR (95%CI), 2.20 (1.25-3.81); P=0.006]. CONCLUSION: This retrospective study categorizes congenital cataracts into two distinct clusters, each associated with a different likelihood of visual outcomes. This innovative classification may enable the personalization and prioritization of early interventions for patients who may gain the greatest benefit, thereby making strides toward precision medicine in the field of congenital cataracts.

9.
Immunol Res ; 72(4): 766-775, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38687433

ABSTRACT

Esophageal cancer (EC) is the 9th most frequently diagnosed malignancy globally with unfavorable prognosis. Immune escape is one of the principal factors leading to poor survival, however, the mechanism underlying immune escape remains largely uninvestigated. The xenograft mouse model and EC cell-CD8+ cytotoxic T lymphocytes (CTLs) co-culture system were established. Immunohistochemistry, qRT-PCR or western blot were employed to detect the levels of long non-coding RNA (lncRNA) FOXP4-AS1, PD-L1, USP10 and other molecules. The abundance of T cells, cytokine production and cell apoptosis were monitored by flow cytometry. The viability of CTLs was assessed by Trypan blue staining. The binding between FOXP4-AS1 and USP10 was validated by RNA pull-down assay, and the interaction between USP10 and PD-L1, as well as the ubiquitination of PD-L1, were detected by co-immunoprecipitation. The elevation of FOXP4-AS1 in EC was associated with decreased CTL abundance, and upregulated PD-L1 facilitated CTL apoptosis in EC. FOXP4-AS1 accelerated EC tumor growth by decreasing the abundance of tumor infiltrating CTLs in vivo. FOXP4-AS1 inhibited the viability of CTLs and facilitated the cytotoxicity and exhaustion of CTLs. In Kyse 450 cell-CTL co-culture system, FOXP4-AS1 suppressed the viability and abundance of CTLs, and inhibited EC cell apoptosis via PD-L1. Mechanistically, FOXP4-AS1 regulated the ubiquitination of PD-L1 through deubiquitinating enzyme USP10. FOXP4-AS1 promoted CTL exhaustion and EC immune escape through USP10-stabilized PD-L1. HIGHLIGHTS: PD-L1 facilitated CD8+ T cell apoptosis in EC. Upregulated FOXP4-AS1 promoted EC tumor growth by inhibiting the viability and facilitating the cytotoxicity and exhaustion of tumor infiltrating CD8+ T cells. FOXP4-AS1 suppressed the viability and abundance of CD8+ T cells through USP10-mediated deubiquitination of PD-L1.


Subject(s)
B7-H1 Antigen , CD8-Positive T-Lymphocytes , Esophageal Neoplasms , Tumor Escape , Ubiquitin Thiolesterase , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Animals , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Mice , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Apoptosis , Gene Expression Regulation, Neoplastic/immunology , Protein Stability , Female , Ubiquitination , Male , T-Lymphocytes, Cytotoxic/immunology , T-Cell Exhaustion
10.
J Mass Spectrom ; 59(5): e5024, 2024 May.
Article in English | MEDLINE | ID: mdl-38605459

ABSTRACT

Yupingfeng granules (YPFG) is commonly used in the treatment of immunological diseases, inflammations, and pulmonary diseases. Several studies have found that chromones, flavones, and saponins were the major bioactive compounds of YPFG. However, few studies have reported accurate quantification methods of these compounds. This study aimed to establish a simple and rapid method by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine 15 bioactive compounds in YPFG. The experimental parameters including extraction methods, extraction solvents, extraction time, solid-liquid ratio, and LC-MS/MS condition were optimized. The linearity, precision, repeatability, stability, and recovery of the established method were evaluated. The contents of 15 bioactive compounds in seven batches of YPFG samples were analyzed by the established method and the results were compared with the values determined by HPLC. The optimal extraction condition was to extract 0.1 g of YPFG by ultrasound with 50 mL 50% ethanol for 30 min. A Waters ACQUITY UPLCBEH C18 column using the 0.1% formic acid water solution and acetonitrile as mobile phase with a gradient elution was applied to the chromatographic separation. The linearity, precision, repeatability, stability, and recovery of the method were within acceptable ranges. Compared with HPLC analysis methods in Chinese Pharmacopoeia and literature, the established method was faster, simpler, more accurate, and more reliable. The method of simultaneous determination of 15 components in YPFG by LC-MS might provide a basis for the study of the bioactive compounds and the improvement of the quality standard of YPFG.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods
12.
iScience ; 27(1): 108731, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38299030

ABSTRACT

Immune suppression within tumor microenvironments (TME) have been implicated in limited efficacy of immune check point inhibitors (ICIs) against solid tumors. Down-regulated VentX expression in tumor associated macrophages (TAMs) underlies phagocytotic anergic phenotype of TAMs, which govern immunological state of TME. In this study, using a tumor immune microenvironment enabling model system (TIME-EMS) of non-small cell lung cancer (NSCLC), we found that PD-1 antibody modestly activates cytotoxic T lymphocytes (CTLs) within the NSCLC-TME but not the status of TIME. We showed that the restoration of VentX expression in TAMs reignites the phagocytotic function of TAMs, which in turn, transforms TIME, activates CTLs in a tumor-specific manner and promotes efficacy of PD-1 antibody against NSCLC but not toxicity on normal lung epithelial cells. Supported by in vivo data on NSG-PDX models of primary human NSCLC, our study revealed potential venues to promote the efficacy of ICI against solid tumors through VentX-based mechanisms.

13.
Materials (Basel) ; 17(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38399195

ABSTRACT

This study focuses on the Medical Isotope Production Reactor (MIPR), an aqueous homogeneous reactor utilized for synthesizing medical isotopes like 99Mo. A pivotal aspect of MIPR's functionality involves the fuel solution's complex chemical interactions, particularly during reactor operation. These interactions result in the formation of precipitates, notably water filamentous uranium ore and columnar uranium ore, which can impact reactor performance. The research presented here delves into the reactions between liquid fuel uranyl nitrate and key radiolytic products, employing simulation calculations complemented by experimental validation. This approach facilitates the identification of uranium precipitate types and their formation conditions under operational reactor settings. Additionally, the article explores strategies to mitigate the formation of specific uranium precipitates, thereby contributing to the efficient and stable operation of MIPR.

14.
Eur J Med Chem ; 265: 116106, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38169271

ABSTRACT

Clinical researches have shown that epidermal growth factor receptor (EGFR) is a key target for treatment of non-small cell lung cancer (NSCLC). Many EGFR inhibitors were successfully developed as ani-tumor drugs to treat NSCLC patients. Unfortunately, drug resistances were found in clinic. To overcome C797S mutation in EGFR, a novel series of 4-arylamine substituted pyrimidine derivatives were designed and synthesized under the principle of structure-based drug design. Interestingly, compounds 6e and 9i demonstrated the best anti-proliferative activity against A549, NCI-H1975, and HCC827 cells. In particular, the IC50 values against HCC827 cells reached to 24.6 nM and 31.6 nM, which were much lower than human normal cells 2BS and LO2. Furthermore, compounds 6e and 9i showed extraordinary activity against EGFR19del/T790M/C797S (IC50 = 16.06 nM and 37.95 nM) and EGFRL858R/T790M/C797S (IC50 = 11.81 nM and 26.68 nM), which were potent than Osimertinib (IC50 = 52.28 nM and 157.60 nM). Further studies have shown that compounds 6e and 9i could pertain inhibition of HCC827 colony formation, and arrest HCC827 cells at G2/M phase. Moreover, the most promising compound 6e could inhibit the migration of HCC827 cells, induce HCC827 cells apoptosis, and significantly inhibit the phosphorylation of EGFR, AKT and Erk1/2. In vivo xenograft mouse model with HCC827 cells, compound 6e resulted in remarkable tumor regression without obvious toxicity. In addition, molecular docking studies suggested that compound 6e could firmly combine with T790M-mutant, T790 M/C797S-mutant, and L858R/T790 M/C797S-mutant EGFR kinases as ATP-competitive inhibitor.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , ErbB Receptors , Lung Neoplasms/pathology , Molecular Docking Simulation , Mutation , Protein Kinase Inhibitors , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Amines/chemistry
15.
Anal Methods ; 16(3): 465-473, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38167895

ABSTRACT

Garlic is famous for its unique flavor and health benefits. An effective means of authenticating garlic's origin is through the implementation of the Protected Geographical Indication (PGI) scheme. However, the prevalence of fraudulent behavior raises concerns regarding the reliability of this system. In this study, garlic samples from six distinct production areas (G1: Cangshan garlic, G2: Qixian garlic, G3: Dali single clove garlic, G4: Jinxiang garlic, G5: Yongnian garlic, and G6: Badong garlic) underwent analysis using HS-GC-IMS. A total of 26 VOCs were detected in the samples. The differences in VOCs among the different garlic samples were visually presented in a two-dimensional topographic map and fingerprint map. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were employed to demonstrate the capacity of the HS-GC-IMS method for effectively distinguishing garlic samples from different geographical sources. Further screening based on the p-value and VIP score threshold identified 12 different aroma substances, which can be utilized for the identification of garlic from different producing areas. The fusion of HS-GC-IMS with multivariate statistical analysis proved to be a rapid, intuitive, and efficient approach for identifying and categorizing garlic VOCs, offering a novel strategy for ascertaining garlic origin and ensuring quality control.


Subject(s)
Garlic , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Reproducibility of Results , Volatile Organic Compounds/analysis , Multivariate Analysis
16.
Chinese Journal of Zoonoses ; (12): 40-45, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1024887

ABSTRACT

The aim of this study was to investigate the virulence determinants and genetic diversity of foodborne Yersinia enterocolitica from Wenzhou.A total of 71 strains of Yersinia enterocolitica were isolated from food and foodborne diarrhea ca-ses in Wenzhou,and their biotypes,serotypes,and drug resistance were analyzed.On the basis of whole genome sequencing,we assessed virulence gene profiles,and performed multilocus sequence typing(MLST)and core gene multilocus sequence typ-ing(cgMLST).A total of 94.4%(67/71)of isolates belonged to biotype 1A,and the highest proportion had serotype lA/O∶5(29.6%,21/71).The sensitivity rates of the isolates to 14 antibiotics exceeded 95.8%.A total of 16 categories and 126 viru-lence genes were identified,with two strains carrying the pYV plasmid and chromosome-related virulence genes.ST3(31.6%,12/38)was the most widespread MLST type,and cgMLST analysis revealed no dense clusters of genotypes except for strains sharing the same ST.In conclusion,pathogenic strains were identified from foodborne Yersinia enterocolitica in Wenzhou and were found to exhibit high genetic polymorphism.Enhanced regulatory supervision is essential to prevent the outbreak of food-borne diseases caused by Yersinia enterocolitica.

17.
Food Res Int ; 175: 113734, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129045

ABSTRACT

Shrimp, renowned for its exceptional nutritional value, holds a pivotal position within the realm of aquatic products. The supplementation of extra oxygen to shrimp throughout the entire supply chain has found application within the commercial seafood market. In this study, a dual-platform metabolic analysis, coupled with multivariate data analysis, was employed to discern the impact of supplementary oxygen. Furthermore, this approach facilitated the construction of the post-mortem metabolic profile of shrimp during cold storage. A noticeable decrease of alcohols, ketones and carbohydrates which are related to the energy metabolism in shrimp has been found during cold storage, compared to the fresh shrimp. The degradation of nutritional amino acids was alleviated in shrimp after 4 h of extra oxygen supplement. Furthermore, a higher concentration of identified fatty acids, integral to lipid metabolism and functioning as flavor compounds was observed in shrimp subsequent to oxygen supplementation. Therefore, the additional oxygen supplementation exerted influence on multiple metabolic pathways, including nitrogen metabolism, amino acid and peptide metabolism, nucleotide metabolism, carbohydrate metabolism, and lipid metabolism. This study has constructed a comprehensive post-mortem metabolic profile of shrimp during cold storage, thereby establishing a theoretical foundation for the utilization of oxygen supplements in the preservation of seafood.


Subject(s)
Oxygen , Seafood , Seafood/analysis , Cryopreservation , Metabolome , Energy Metabolism
18.
Transl Oncol ; 40: 101843, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101175

ABSTRACT

Previous studies have demonstrated that carbohydrate sulfotransferase family proteins (CHSTs) play a crucial role in the extracellular matrix structural constituent and cancer progression, however, the effect of CHSTs on gastric cancer is still superficial. To investigate these, our study seeks to provide a comprehensive understanding of CHSTs' expression, immune infiltration, and prognostic implications in gastric cancer, utilizing data from the TCGA, GEO and GTEx databases. Furthermore, we conducted experimental validation to elucidate the role of CHST14 specifically in gastric cancer. Our findings suggest that most CHSTs were highly expressed in gastric cancer. Gene copy number variations further indicated prevalent CHSTs amplification in gastric cancer, pointing to its potential relevance in disease progression. Intriguingly, we noted strong positive correlations between most CHSTs and immune cell infiltration. Importantly, most members of CHSTs were related to OS and PFI with gastric cancer, with particular emphasis on CHST14 and CHST9. Multifactorial regression analysis indicates that CHST14 is an independent prognostic factor influencing the overall survival of gastric cancer patients. In further experimental validation, our results demonstrate elevated expression of CHST14 in gastric cancer, and knocking down CHST14 inhibits gastric cancer cell proliferation, invasion, migration and EMT. Additionally, CHST14 may exert its function through the regulation of the Wnt pathway. In summary, our study comprehensively analyzes the hitherto undescribed role of CHSTs in gastric cancer through the analysis of multi-omics data. Importantly, we identify CHST14 as a pivotal promoter in the malignant progression of gastric cancer, offering potential targets for gastric cancer therapy.

19.
J Fluoresc ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38047988

ABSTRACT

Fluoride is both necessary and potentially harmful in excessive amounts, making its detection crucial. Fluorescent probes provide a sensitive and selective means for this purpose. In this study, we developed and synthesized a fluorescent probe for LDT using phenothiazine derivatives and aryl vinyl nitrile. Initially non-fluorescent, the probe undergoes a Si-O bond breakage in the presence of fluoride ions, resulting in the formation of a larger conjugated system and subsequent fluorescence emission. The probe exhibits superior selectivity and sensitivity towards fluoride ions, with a detection limit of 0.35 µM. Moreover, cellular imaging experiments demonstrated the probe's effectiveness in recognizing fluoride ions within HepG2 cells.

20.
Cells ; 12(23)2023 11 30.
Article in English | MEDLINE | ID: mdl-38067167

ABSTRACT

Transforming growth factor-beta 2 (TGF-ß2), an important member of the TGF-ß family, is a secreted protein that is involved in many biological processes, such as cell growth, proliferation, migration, and differentiation. TGF-ß2 had been thought to be functionally identical to TGF-ß1; however, an increasing number of recent studies uncovered the distinctive features of TGF-ß2 in terms of its expression, activation, and biological functions. Mice deficient in TGF-ß2 showed remarkable developmental abnormalities in multiple organs, especially the cardiovascular system. Dysregulation of TGF-ß2 signalling was associated with tumorigenesis, eye diseases, cardiovascular diseases, immune disorders, as well as motor system diseases. Here, we provide a comprehensive review of the research progress in TGF-ß2 to support further research on TGF-ß2.


Subject(s)
Transforming Growth Factor beta2 , Transforming Growth Factors , Mice , Animals , Transforming Growth Factor beta2/genetics , Transforming Growth Factor beta2/metabolism , Cell Differentiation , Cell Cycle , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL